Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 64(3): 305-316, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36263676

RESUMO

Plants have the regenerative ability to reconnect cut organs, which is physiologically important to survive severe tissue damage. The ability to reconnect organs is utilized as grafting to combine two different individuals. Callus formation at the graft junction facilitates organ attachment and vascular reconnection. While it is well documented that local wounding signals provoke callus formation, how callus formation is differentially regulated at each cut end remains elusive. Here, we report that callus formation activity is asymmetrical between the top and bottom cut ends and is regulated by differential auxin accumulation. Gene expression analyses revealed that cellular auxin response is preferentially upregulated in the top part of the graft. Disruption of polar auxin transport inhibited callus formation from the top, while external application of auxin was sufficient to induce callus formation from the bottom, suggesting that asymmetric auxin accumulation is responsible for active callus formation from the top end. We further found that the expression of a key regulator of callus formation, WUSCHEL-RELATED HOMEOBOX 13 (WOX13), is induced by auxin. The ectopic callus formation from the bottom end, which is triggered by locally supplemented auxin, requires WOX13 function, demonstrating that WOX13 plays a pivotal role in auxin-dependent callus formation. The asymmetric WOX13 expression is observed both in grafted petioles and incised inflorescence stems, underscoring the generality of our findings. We propose that efficient organ reconnection is achieved by a combination of local wounding stimuli and disrupted long-distance signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plantas/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
2.
Plants (Basel) ; 10(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34961180

RESUMO

The spores of Lygodium japonicum, cultured in the dark, form a filamentous structure called protonema. Earlier studies have shown that gibberellin (GA) induces protonema elongation, along with antheridium formation, on the protonema. In this study, we have performed detailed morphological analyses to investigate the roles of multiple phytohormones in antheridium formation, protonema elongation, and prothallus formation in L. japonicum. GA4 methyl ester is a potent GA that stimulates both protonema elongation and antheridium formation. We found that these effects were inhibited by simultaneous application of abscisic acid (ABA). On the other hand, IAA (indole-3-acetic acid) promoted protonema elongation but reduced antheridium formation, while these effects were partially recovered by transferring to an IAA-free medium. An auxin biosynthesis inhibitor, PPBo (4-phenoxyphenylboronic acid), and a transport inhibitor, TIBA (2,3,5-triiodobenzoic acid), both inhibited protonema elongation and antheridium formation. L. japonicum prothalli are induced from germinating spores under continuous white light. Such development was negatively affected by PPBo, which induced smaller-sized prothalli, and TIBA, which induced aberrantly shaped prothalli. The evidence suggests that the crosstalk between these plant hormones might regulate protonema elongation and antheridium formation in L. japonicum. Furthermore, the possible involvement of auxin in the prothalli development of L. japonicum is suggested.

3.
Commun Biol ; 4(1): 369, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742091

RESUMO

ANAC071 and its homolog ANAC096 are plant-specific transcription factors required for the initiation of cell division during wound healing in incised Arabidopsis flowering stems and Arabidopsis hypocotyl grafts; however, the mechanism remains mostly unknown. In this study, we showed that wound-induced cambium formation involved cell proliferation and the promoter activity of TDR/PXY (cambium-related gene) in the incised stem. Prior to the wound-induced cambium formation, both ANAC071 and ANAC096 were expressed at these sites. anac-multiple mutants significantly decreased wound-induced cambium formation in the incised stems and suppressed the conversion from mesophyll cells to cambial cells in an ectopic vascular cell induction culture system (VISUAL). Our results suggest that ANAC071 and ANAC096 are redundantly involved in the process of "cambialization", the conversion from differentiated cells to cambial cells, and these cambium-like cells proliferate and provide cells in wound tissue during the tissue-reunion process.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proliferação de Células , Flores/metabolismo , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regeneração , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diferenciação Celular , Flores/genética , Regulação da Expressão Gênica de Plantas , Mutação , Filogenia , Caules de Planta/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética
4.
Phytochemistry ; 136: 46-55, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28057327

RESUMO

Endogenous brassinosteroids (BRs) in non-flowering land plants were analyzed. BRs were found in a liverwort (Marchantia polymorpha), a moss (Physcomitrella patens), lycophytes (Selaginella moellendorffii and S. uncinata) and 13 fern species. A biologically active BR, castasterone (CS), was identified in most of these non-flowering plants but another biologically active BR, brassinolide, was not. It may be distinctive that levels of CS in non-flowering plants were orders of magnitude lower than those in flowering plants. 22-Hydroxycampesterol and its metabolites were identified in most of the non-flowering plants suggesting that the biosynthesis of BRs via 22-hydroxylation of campesterol occurs as in flowering plants. Phylogenetic analyses indicated that M. polymorpha, P. patens and S. moellendorffii have cytochrome P450s in the CYP85 clans which harbors BR biosynthesis enzymes, although the P450 profiles are simpler as compared with Arabidopsis and rice. Furthermore, these basal land plants were found to have multiple P450s in the CYP72 clan which harbors enzymes to catabolize BRs. These findings indicate that green plants were able to synthesize and inactivate BRs from the land-transition stage.


Assuntos
Brassinosteroides/isolamento & purificação , Cycadopsida/química , Arabidopsis/química , Brassinosteroides/química , Brassinosteroides/metabolismo , Briófitas/química , Bryopsida/química , Sistema Enzimático do Citocromo P-450/metabolismo , Gleiquênias/química , Hepatófitas/química , Marchantia/química , Oryza/química , Filogenia , Selaginellaceae/química , Esteroides Heterocíclicos
5.
Biosci Biotechnol Biochem ; 80(10): 1934-8, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27240428

RESUMO

Rice produces low-molecular-weight antimicrobial compounds known as phytoalexins, in response to not only pathogen attack but also abiotic stresses including ultraviolet (UV) irradiation. Rice phytoalexins are composed of diterpenoids and a flavonoid. Recent studies have indicated that endogenous jasmonyl-l-isoleucine (JA-Ile) is not necessarily required for the production of diterpenoid phytoalexins in blast-infected or CuCl2-treated rice leaves. However, JA-Ile is required for the accumulation of the flavonoid phytoalexin, sakuranetin. Here, we investigated the roles of JA-Ile in UV-induced phytoalexin production. We showed that UV-irradiation induces the biosynthesis of JA-Ile and its precursor jasmonic acid. We also showed that rice jasmonate biosynthesis mutants produced diterpenoid phytoalexins but not sakuranetin in response to UV, indicating that JA-Ile is required for the production of sakuranetin but not diterpenoid phytoalexins in UV-irradiated rice leaves.


Assuntos
Ciclopentanos/metabolismo , Flavonoides/química , Isoleucina/análogos & derivados , Oryza/metabolismo , Oryza/efeitos da radiação , Folhas de Planta/metabolismo , Sesquiterpenos/metabolismo , Raios Ultravioleta/efeitos adversos , Diterpenos/química , Isoleucina/metabolismo , Oryza/fisiologia , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Sesquiterpenos/química , Fitoalexinas
6.
Phytochemistry ; 104: 21-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24856112

RESUMO

In this study the relationship between blue light- and brassinosteroid-enhanced leaf lamina bending and unrolling in rice was investigated. Twenty-four hours (h) irradiation with white or blue light increased endogenous brassinosteroid levels, especially those of typhasterol and castasterone, in aerial tissues of rice seedlings. There was an accompanying up-regulation of transcript levels of CYP85A1/OsDWARF, encoding an enzyme catalyzing C-6 oxidation, after 6h under either white or blue light. These effects were not observed in seedlings placed under far-red or red light regimes. It was concluded that blue light up-regulates the levels of several cytochrome P450 enzymes including CYP85A1, thereby promoting the synthesis of castasterone, a biologically active brassinosteroid in rice. Based on these findings, it is considered that blue light-mediated rice leaf bending and unrolling are consequences of the enhanced biosynthesis of endogenous castasterone. In contrast to aerial tissues, brassinosteroid synthesis in roots appeared to be negatively regulated by white, blue and red light but positively controlled by far-red light.


Assuntos
Brassinosteroides/metabolismo , Colestanóis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Oryza/efeitos da radiação , Brassinosteroides/química , Brassinosteroides/efeitos da radiação , Colestanóis/química , Colestanóis/efeitos da radiação , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/efeitos da radiação , Genes Reporter , Especificidade de Órgãos , Oryza/genética , Oryza/fisiologia , Fenótipo , Floema/genética , Floema/fisiologia , Floema/efeitos da radiação , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/efeitos da radiação , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos da radiação , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Fatores de Tempo , Regulação para Cima
7.
J Exp Bot ; 64(8): 2435-48, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23599276

RESUMO

Brassinosteroids (BRs) are steroidal plant hormones that play an important role in the growth and development of plants. The biosynthesis of sterols and BRs as well as the signalling cascade they induce in plants have been elucidated largely through metabolic studies and the analysis of mutants in Arabidopsis and rice. Only fragmentary details about BR signalling in other plant species are known. Here a forward genetics strategy was used in Petunia hybrida, by which 19 families with phenotypic alterations typical for BR deficiency mutants were identified. In all mutants, the endogenous BR levels were severely reduced. In seven families, the tagged genes were revealed as the petunia BR biosynthesis genes CYP90A1 and CYP85A1 and the BR receptor gene BRI1. In addition, several homologues of key regulators of the BR signalling pathway were cloned from petunia based on homology with their Arabidopsis counterparts, including the BRI1 receptor, a member of the BES1/BZR1 transcription factor family (PhBEH2), and two GSK3-like kinases (PSK8 and PSK9). PhBEH2 was shown to interact with PSK8 and 14-3-3 proteins in yeast, revealing similar interactions to those during BR signalling in Arabidopsis. Interestingly, PhBEH2 also interacted with proteins implicated in other signalling pathways. This suggests that PhBEH2 might function as an important hub in the cross-talk between diverse signalling pathways.


Assuntos
Brassinosteroides/biossíntese , Petunia/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Transdução de Sinais/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Mutação/genética , Mutação/fisiologia , Petunia/genética , Petunia/fisiologia , Filogenia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Transdução de Sinais/genética , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/fisiologia
8.
Plant J ; 72(5): 791-804, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22882494

RESUMO

Plants produce structurally diverse triterpenoids, which are important for their life and survival. Most triterpenoids and sterols share a common biosynthetic intermediate, 2,3-oxidosqualene (OS), which is cyclized by 2,3-oxidosqualene cyclase (OSC). To investigate the role of an OSC, marneral synthase 1 (MRN1), in planta, we characterized a Arabidopsis mrn1 knock-out mutant displaying round-shaped leaves, late flowering, and delayed embryogenesis. Reduced growth of mrn1 was caused by inhibition of cell expansion and elongation. Marnerol, a reduced form of marneral, was detected in Arabidopsis overexpressing MRN1, but not in the wild type or mrn1. Alterations in the levels of sterols and triterpenols and defects in membrane integrity and permeability were observed in the mrn1. In addition, GUS expression, under the control of the MRN1 gene promoter, was specifically detected in shoot and root apical meristems, which are responsible for primary growth, and the mRNA expression of Arabidopsis clade II OSCs was preferentially observed in roots and siliques containing developing seeds. The eGFP:MRN1 was localized to the endoplasmic reticulum in tobacco protoplasts. Taken together, this report provides evidence that the unusual triterpenoid pathway via marneral synthase is important for the growth and development of Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Genes Recessivos , Germinação/genética , Meristema/genética , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/citologia , Folhas de Planta/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Nicotiana/genética , Triterpenos/metabolismo
9.
Plant Cell ; 18(11): 3275-88, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17138693

RESUMO

Brassinosteroids (BRs) are biosynthesized from campesterol via several cytochrome P450 (P450)-catalyzed oxidative reactions. We report the functional characterization of two BR-biosynthetic P450s from Arabidopsis thaliana: CYP90C1/ROTUNDIFOLIA3 and CYP90D1. The cyp90c1 cyp90d1 double mutant exhibits the characteristic BR-deficient dwarf phenotype, although the individual mutants do not display this phenotype. These data suggest redundant roles for these P450s. In vitro biochemical assays using insect cell-expressed proteins revealed that both CYP90C1 and CYP90D1 catalyze C-23 hydroxylation of various 22-hydroxylated BRs with markedly different catalytic efficiencies. Both enzymes preferentially convert 3-epi-6-deoxocathasterone, (22S,24R)-22-hydroxy-5alpha-ergostan-3-one, and (22S,24R)-22-hydroxyergost-4-en-3-one to 23-hydroxylated products, whereas they are less active on 6-deoxocathasterone. Likewise, cyp90c1 cyp90d1 plants were deficient in 23-hydroxylated BRs, and in feeding experiments using exogenously supplied intermediates, only 23-hydroxylated BRs rescued the growth deficiency of the cyp90c1 cyp90d1 mutant. Thus, CYP90C1 and CYP90D1 are redundant BR C-23 hydroxylases. Moreover, their preferential substrates are present in the endogenous Arabidopsis BR pool. Based on these results, we propose C-23 hydroxylation shortcuts that bypass campestanol, 6-deoxocathasterone, and 6-deoxoteasterone and lead directly from (22S,24R)-22-hydroxy-5alpha-ergostan-3-one and 3-epi-6-deoxocathasterone to 3-dehydro-6-deoxoteasterone and 6-deoxotyphasterol.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Carbono/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fitosteróis/biossíntese , Animais , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Catálise/efeitos dos fármacos , Cotilédone/efeitos dos fármacos , Cotilédone/enzimologia , Sistema Enzimático do Citocromo P-450/deficiência , Sistema Enzimático do Citocromo P-450/genética , Éxons/genética , Cromatografia Gasosa-Espectrometria de Massas , Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hidroxilação/efeitos dos fármacos , Hipocótilo/efeitos dos fármacos , Hipocótilo/enzimologia , Insetos/citologia , Íntrons/genética , Cinética , Mutação/genética , Fenótipo , Fitosteróis/análise , Fitosteróis/química , Fitosteróis/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade por Substrato
10.
Plant Physiol ; 141(1): 299-309, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16531479

RESUMO

Plant steroid hormones, brassinosteroids (BRs), are essential for normal photomorphogenesis. However, the mechanism by which light controls physiological functions via BRs is not well understood. Using transgenic plants carrying promoter-luciferase reporter gene fusions, we show that in Arabidopsis (Arabidopsis thaliana) the BR-biosynthetic CPD and CYP85A2 genes are under diurnal regulation. The complex diurnal expression profile of CPD is determined by dual, light-dependent, and circadian control. The severely decreased expression level of CPD in phytochrome-deficient background and the red light-specific induction in wild-type plants suggest that light regulation of CPD is primarily mediated by phytochrome signaling. The diurnal rhythmicity of CPD expression is maintained in brassinosteroid insensitive 1 transgenic seedlings, indicating that its transcriptional control is independent of hormonal feedback regulation. Diurnal changes in the expression of CPD and CYP85A2 are accompanied by changes of the endogenous BR content during the day, leading to brassinolide accumulation at the middle of the light phase. We also show that CPD expression is repressed in extended darkness in a BR feedback-dependent manner. In the dark the level of the bioactive hormone did not increase; therefore, our data strongly suggest that light also influences the sensitivity of plants to BRs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ritmo Circadiano , Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica de Plantas , Esteroide Hidroxilases/genética , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Retroalimentação Fisiológica , Genes Reporter , Luz , Luciferases/genética , Luciferases/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Esteroide Hidroxilases/metabolismo
11.
Plant J ; 42(1): 13-22, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15773850

RESUMO

Brassinosteroids (BRs) are plant steroidal hormones that regulate plant growth and development. An Arabidopsis dwarf mutant, shrink1-D (shk1-D), was isolated and the phenotype was shown to be caused by activation of the CYP72C1 gene. CYP72C1 is a member of the cytochrome P450 monooxygenase gene family similar to BAS1/CYP734A1 that regulates BR inactivation. shk1-D has short hypocotyls in both light and dark, and short petioles and siliques. The seeds are also shortened along the longitudinal axis indicating CYP72C1 controls cell elongation. The expression of CPD, TCH4 and BAS1 were altered in CYP72C1 overexpression transgenic lines and endogenous levels of castasterone, 6-deoxocastasterone and 6-deoxotyphasterol were also altered. Unlike BAS1/CYP734A1 the expression of CYP72C1 was not changed by application of exogenous brassinolide. We propose that CYP72C1 controls BR homeostasis by modulating the concentration of BRs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Sistema Enzimático do Citocromo P-450/genética , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Brassinosteroides , Colestanóis/farmacologia , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Hipocótilo/efeitos dos fármacos , Hipocótilo/crescimento & desenvolvimento , Luz , Dados de Sequência Molecular , Mutação , Fenótipo , Plantas Geneticamente Modificadas , Esteroides , Esteroides Heterocíclicos/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...