Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 10(7): 2988-95, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24690479

RESUMO

In order to create suitable biocompatible materials for various tissue engineering applications, it is important to be able to understand protein adsorption and cell adhesion behaviors on the material's surfaces. It is known that the nanoscale distribution of adsorbed proteins affects cell adhesion behaviors. However, how nanoscale structures affect cell adhesion behaviors is still unclear. Therefore, in this study, we investigate the effect of the distribution of adsorbed proteins by the phase reversal of amphiphilic block copolymers composed of protein-non-adsorptive poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and protein-adsorptive poly(3-methacryloyloxy propyltris(trimethylsilyloxy) silane) (PMPTSSi) on cell adhesion behaviors. The nanodomain structures of phase-separated block copolymers were successfully confirmed using transmission electron microscopy and atomic force microscopy. Surfaces that had PMPC dot-like domains (23 ± 4 nm) and ones that had PMPTSSi dot-like domains (25 ± 6 nm) were made. From protein adsorption and L929 cell adhesion measurements, it was found that even on surfaces with equal quantities of protein adsorption, the number of cells on surfaces with PMPC dot-like domains was larger than those with PMPTSSi dot-like domains. This suggests that the simple phase-reversal of the distribution of adsorbed proteins can be used to affect cell adhesion behaviors for designing biomaterial surfaces for tissue engineering applications.


Assuntos
Adesão Celular , Polímeros/química , Proteínas/química , Propriedades de Superfície , Adsorção , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão
2.
Sci Technol Adv Mater ; 15(1): 015009, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877651

RESUMO

Magnetostructural correlations in antiperovskite manganese nitrides were investigated systematically for stoichiometric and solid solution Mn3Cu1-x A x N (A = Co, Ni, Zn, Ga, Ge, Rh, Pd, Ag, In, Sn or Sb). This class of nitrides is attracting great attention because of their giant negative thermal expansion, which is achieved by doping Ge or Sn into the A site as a relaxant of the sharp volume contraction on heating (spontaneous volume magnetostriction ωs) because of the magnetovolume effects. The physical background of large ωs and mechanism of how the volume contraction becomes gradual with temperature are central concerns for the physics and applications of these nitrides. An entire dataset of thermal expansion, crystal structure and magnetization demonstrates that the cubic triangular antiferromagnetic state is crucial for large ωs. The intimate relationship between ωs and the magnetic structure is discussed in terms of geometrical frustration related to the Mn6N octahedron and magnetic stress concept. The results presented herein also show that ωs depends on the number of d electrons in the A atom, suggesting the important role of the d orbitals of the A atom. Not all the dopants in the A site, but the elements that disturb the cubic triangular antiferromagnetic state, are effective in broadening the volume change. This fact suggests that instability neighboring the phase boundary is related to the broadening. The relation between the gradual volume change and the local structure anomaly is suggested by recent microprobe studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...