Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(1): 267-271, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38166120

RESUMO

Understanding certain behaviors of water, e.g., its dynamics, is extremely important in various fields. Recently, using 1H nuclear magnetic resonance spectroscopy, we have identified a metastable state of water molecules, i.e., water clusters, in hydrophobic solvents in addition to dissolved water molecules and a small bulk water domain. However, the low abundance of water clusters made observing their dynamics challenging. In this study, the dynamics of water clusters in benzene-d6 were investigated by quasi-elastic neutron scattering measurements using the AGNES time-of-flight spectrometer of the Japan Research Reactor JRR-3. The diffusion dynamics of the hydrogen atoms were much slower than those of bulk water (with a self-diffusion coefficient of 1.15 × 10-9 m2/s at 273 K) and even slower than the upper-limit dynamics at the observable scale (10-10 m2/s). The dynamics of water clusters are slow, "like ice", even at 283-303 K, which is above the freezing point of water (273 K).

2.
J Phys Chem Lett ; 12(24): 5802-5806, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34137615

RESUMO

Anomalies of water have been explained by the two-state water model. In the model, water becomes one state upon supercooling. However, water crystallizes completely below 235 K ("no man's land"). The structural origin of the anomalous of the water is hidden in the "no man's land". To understand the properties of water, the spectroscopic experiment in "Norman's land" is inevitable. Hence, we proposed a new soft-confinement method for standard nuclear magnetic resonance spectroscopy to explore the "no man's land". We found the singularity temperature (215 K) at ambient pressure. Water exists in one state below 215 K. Above 215 K, the two states of water are supercritical states of the liquid-liquid critical point. The current study provides a perspective to determine the liquid-liquid critical point of water existing in a high-pressure condition.

3.
J Phys Chem Lett ; 12(1): 276-279, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33337164

RESUMO

The hydrophilic/hydrophobic interactions of water are important in biological and chemical self-assembly phenomena. Water clusters in hydrophobic environments exhibit a unique morphology. Their process of formation and nonpolar properties have been extensively studied, but no direct experimental evidence has been available until now. This study provides spectroscopic evidence for the transformation of water to nonpolar configuration via clustering. Although individual water molecules form hydrogen bonds with the hydroxyl protons of n-hexanol when codissolved in a nonpolar solvent (toluene-d8), the water clusters are comprised solely of hydrogen bonds between water molecules and do not form hydrogen bonds with the hydroxyl protons of n-hexanol. This behavior indicates that the water clusters are nonpolar rather than polar. This study reports the first example of nonpolar water configuration produced via a liquid-state clustering. This property is a common and important interfacial phenomenon of water in chemistry, biology, materials science, geology, and meteorology.

4.
J Phys Chem Lett ; 11(9): 3667-3671, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32320245

RESUMO

The properties of low-entropy water clusters and small bulk water domains in a hydrophobic solvent over a wide temperature range (235-333 K), including supercooling temperatures, were investigated. 1H nuclear magnetic resonance spectroscopy showed singularity temperatures at ∼300, 250, 235, and 225 K. We proposed a model to understand these singularity temperatures in which the low-entropy water cluster is a locally favored tetrahedral structure (LFTS) and the small bulk water domain contains a mixture of disordered normal-liquid structure (DNLS) and LFTS. The model showed that the LFTS and DNLS populations change with applied temperature. Above ∼300 K, all local water structures become a DNLS. The population of LFTS increases with cooling and becomes dominant below ∼250 K. At ∼225 K, all local water structures converge to LFTS. The phase-transition rate of the low-entropy water clusters and small bulk water domains increases significantly at ∼235 K. The phase transition of the low-entropy water clusters showed primary ice nucleation. Low-entropy water clusters in a hydrophobic solvent are a unique water morphology and a probe material for water investigations.

5.
Polymers (Basel) ; 11(10)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597231

RESUMO

In this work, we design and produce micron-sized fiber mats by blending poly(ε-caprolactone) (PCL) with small amounts of block copolymers poly(ethylene oxide)m-block-poly(ε-caprolactone)n (PEOm-b-PCLn) using electrospinning. Three different PEOm-b-PCLn block copolymers, with different molecular weights of PEO and PCL, were synthesized by ring opening polymerization of ε-caprolactone using PEO as initiator and stannous octoate as catalyst. The polymer blends were prepared by homogenous solvent mixing using dichloromethane for further electrospinning procedures. After electrospinning, it was found that the addition to PCL of the different block copolymers produced micron-fibers with smaller width, equal or higher hydrophilicity, lower Young modulus, and rougher surfaces, as compared with micron-fibers obtained only with PCL. Neural stem progenitor cells (NSPC), isolated from rat brains and grown as neurospheres, were cultured on the fibrous materials. Immunofluorescence assays showed that the NSPC are able to survive and even differentiate into astrocytes and neurons on the synthetic fibrous materials without any growth factor and using the fibers as guidance. Disassembling of the cells from the NSPC and acquisition of cell specific molecular markers and morphology progressed faster in the presence of the block copolymers, which suggests the role of the hydrophilic character and porous topology of the fiber mats.

6.
Mol Pharm ; 16(7): 2892-2901, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31181908

RESUMO

To date, a large number of active molecules are hydrophilic and aromatic low molecular-weight drugs (HALMD). Unfortunately, the low capacity of these molecules to interact with excipients and the fast release when a formulation containing them is exposed to biological media jeopardize the elaboration of drug delivery systems by using noncovalent interactions. In this work, a new, green, and highly efficient methodology to noncovalently attach HALMD to hydrophilic aromatic polymers to create nanocarriers is presented. The proposed method is simple and consists in mixing an aqueous solution containing HALMD (model drugs: imipramine, amitriptyline, or cyclobenzaprine) with another aqueous solution containing the aromatic polymer [model polymer: poly(sodium 4-styrenesulfonate) (PSS)]. NMR experiments demonstrate strong chemical shifting of HALMD aromatic rings when interacting with PSS, evidencing aromatic-aromatic interactions. Ion pair formation and aggregation produce the collapse of the system in the form of nanoparticles. The obtained nanocarriers are spheroidal, their size ranging between 120 and 170 nm, and possess low polydispersity (≤0.2) and negative zeta potential (from -60 to -80 mV); conversely, the absence of the aromatic group in the polymer does not allow the formation of nanostructures. Importantly, in addition to high drug association efficiencies (≥90%), the formed nanocarriers show drug loading values never evidenced for other systems comprising HALMD, reaching ≈50%. Diafiltration and stopped flow experiments evidenced kinetic drug entrapment governed by molecular rearrangements. Importantly, the nanocarriers are stable in suspension for at least 18 days and are also stable when exposed to different high ionic strength, pH, and temperature values. Finally, they are transformable to a reconstitutable dry powder without losing their original characteristics. Considering the large quantity of HALMD with importance in therapeutics and the simplicity of the presented strategy, we envisage these results as the basis to elaborate a number of drug delivery systems with applications in different pathologies.


Assuntos
Antidepressivos Tricíclicos/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Polímeros/química , Ácidos Sulfônicos/química , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Peso Molecular , Nanomedicina/métodos , Tamanho da Partícula
7.
J Am Soc Mass Spectrom ; 30(8): 1503-1511, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31102188

RESUMO

A novel ionization/sampling method termed triboionization was developed. Triboionization is an ionization method that only uses cohesive substances, such as food wrap or sticky tape, and does not require an electrode, electric power supply, heat source, light source, radiation, or gas, unlike most other conventional ambient ionization methods. In this study, the sample compound attached to adhesive tape or plastic wrap was quickly peeled off at a distance of approximately 2 cm from the atmospheric interface of a mass spectrometer. All of the five types of food wrap and 13 types of adhesive tape tested successfully ionized caffeine. Nine out of ten model compounds were detected as the corresponding molecular ions in the positive or negative mode by this ionizing contrivance using an oriented polypropylene adhesive tape. The detected molecular ions were typically protonated molecules or sodium adducts in the positive mode or deprotonated molecules in the negative mode. The elemental compositions of the observed ions were confirmed within 5 ppm by high-resolution mass spectrometry. The triboionization phenomenon was considered to depend on physical and electronic events caused by peeling off a cohesive substance. Triboionization is able to provide a compact ion source using only mechanical mechanisms. Additionally, triboionization allows sticky tape to be used as a convenient sampling device for surface analysis.

8.
Sci Rep ; 9(1): 223, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30659206

RESUMO

Unusual physical characteristics of water can be easier explained and understood if properties of water clusters are revealed. Experimental investigation of water clusters has been reported by highly specialized equipment and/or harsh experimental conditions and has not determined the properties and the formation processes. In the current work, we used standard 1H-NMR as a versatile and facile tool to quantitatively investigate water clusters in the liquid phase under ambient conditions. This approach allows collection of data regarding the formation, long lifetime, stability, and physical properties of water clusters, as a cubic octamer in the liquid phase.

9.
J Phys Chem B ; 121(44): 10285-10291, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29028169

RESUMO

Upon titration of n-hexanol/cyclohexane mixtures of different molar compositions with water, water/n-hexanol clusters are formed in cyclohexane. Here, we develop a new method to estimate the water and n-hexanol aggregation numbers in the clusters that combines integration analysis in one-dimensional 1H NMR spectra, diffusion coefficients calculated by diffusion-ordered NMR spectroscopy, and further application of the Stokes-Einstein equation to calculate the hydrodynamic volume of the clusters. Aggregation numbers of 5-15 molecules of n-hexanol per cluster in the absence of water were observed in the whole range of n-hexanol/cyclohexane molar fractions studied. After saturation with water, aggregation numbers of 6-13 n-hexanol and 0.5-5 water molecules per cluster were found. O-H and O-O atom distances related to hydrogen bonds between donor/acceptor molecules were theoretically calculated using density functional theory. The results show that at low n-hexanol molar fractions, where a robust hydrogen-bond network is held between n-hexanol molecules, addition of water makes the intermolecular O-O atom distance shorter, reinforcing molecular association in the clusters, whereas at high n-hexanol molar fractions, where dipole-dipole interactions dominate, addition of water makes the intermolecular O-O atom distance longer, weakening the cluster structure. This correlates with experimental NMR results, which show an increase in the size and aggregation number in the clusters upon addition of water at low n-hexanol molar fractions, and a decrease of these magnitudes at high n-hexanol molar fractions. In addition, water produces an increase in the proton exchange rate between donor/acceptor molecules at all n-hexanol molar fractions.

10.
Eur J Mass Spectrom (Chichester) ; 23(1): 4-10, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28657446

RESUMO

In this study, direct analysis in real time adduct selectivities of a 558 in-house high-resolution mass spectrometry sample library was evaluated. The protonated molecular ion ([M + H]+) was detected in 462 samples. The ammonium adduct ion ([M + NH4]+) was also detected in 262 samples. [M + H]+ and [M + NH4]+ molecular ions were observed simultaneously in 166 samples. These adduct selectivities were related to the elemental compositions of the sample compounds. [M + NH4]+ selectivity correlated with the number of oxygen atom(s), whereas [M + H]+ selectivity correlated with the number of nitrogen atom(s) in the elemental compositions. For compounds including a nitrogen atom and an oxygen atom [M + H]+ was detected; [M + NH4]+ was detected for compounds including an oxygen atom only. Density functional theory calculations were performed for selected library samples and model compounds. Energy differences were observed between compounds detected as [M + H]+ and [M + NH4]+, and between compounds including a nitrogen atom and an oxygen atom in their elemental compositions. The results suggested that the presence of oxygen atoms stabilizes [M + NH4]+, but not every oxygen atom has enough energy for detection of [M + NH4]+. It was concluded that the nitrogen atom(s) and oxygen atom(s) in the elemental compositions play important roles in the adduct formation in direct analysis in real time mass spectrometry.

11.
Eur J Mass Spectrom (Chichester) ; 23(1): 40-44, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28657448

RESUMO

Analysis of the fragmentation pathways of molecules in mass spectrometry gives a fundamental insight into gas-phase ion chemistry. However, the conventional intrinsic reaction coordinates method requires knowledge of the transition states of ion structures in the fragmentation pathways. Herein, we use the nudged elastic band method, using only the initial and final state ion structures in the fragmentation pathways, and report the advantages and limitations of the method. We found a minimum energy path of p-benzoquinone ion fragmentation with two saddle points and one intermediate structure. The primary energy barrier, which corresponded to the cleavage of the C-C bond adjacent to the CO group, was calculated to be 1.50 eV. An additional energy barrier, which corresponded to the cleavage of the CO group, was calculated to be 0.68 eV. We also found an energy barrier of 3.00 eV, which was the rate determining step of the keto-enol tautomerization in CO elimination from the molecular ion of phenol. The nudged elastic band method allowed the determination of a minimum energy path using only the initial and final state ion structures in the fragmentation pathways, and it provided faster than the conventional intrinsic reaction coordinates method. In addition, this method was found to be effective in the analysis of the charge structures of the molecules during the fragmentation in mass spectrometry.

12.
J Phys Chem Lett ; 8(4): 819-824, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28151688

RESUMO

A hemoglobin (Hb) wrapped covalently by three human serum albumins (HSAs) is a triangular protein cluster designed as an artificial O2-carrier and red blood cell substitute. We report the structural insights into this Hb-HSA3 cluster in aqueous medium revealed by 3D reconstruction based on cryogenic transmission electron microscopy (cryo-TEM) data and small-angle X-ray scattering (SAXS) measurements. Cryo-TEM observations showed individual particles with approximately 15 nm diameter in the vitrified ice layer. Subsequent image processing and 3D reconstruction proved the expected spatial arrangements of an Hb in the center and three HSAs at the periphery. SAXS measurements demonstrated the monodispersity of the Hb-HSA3 cluster having a molecular mass of 270 kDa. The pair-distance distribution function suggested the existence of oblate-like particles with a maximum dimeter of ∼17 nm. The supramolecular 3D structure reconstructed from the SAXS intensity using an ab initio procedure was similar to that obtained from cryo-TEM data.


Assuntos
Hemoglobinas/química , Microscopia Eletrônica de Transmissão/métodos , Albumina Sérica Humana/química , Água/química , Humanos , Peso Molecular , Oxigênio/química , Espalhamento a Baixo Ângulo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
J Phys Chem B ; 121(4): 876-882, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28060513

RESUMO

Molecular aggregation in a mixture of Triton X-100/n-hexanol/cyclohexane at a molar ratio of 1/16/74 is studied upon addition of small amounts of water. The composition of organic components has been chosen at a ratio n-hexanol/cyclohexane where a well-formed hydrogen bond network has been described. The ratio Triton X-100/n-hexanol has been chosen to afford a stoichiometry of ethylene oxide (EO) residues/n-hexanol of 1/2. At these conditions the addition of water consecutively produces the appearance of three defined phases: a clear solution, a lamellar phase, and a microemulsion. The two corresponding transitions occur at water/EO/n-hexanol molar ratios of 2/1/2 (clear to lamella), and 3/1/2 (lamella to microemulsion), while phase separation occurs at a molar ratio of 4/1/2, highlighting the important role of stoichiometry. Molecular dynamics measured by 1H NMR techniques, such as DOSY, and calculations of T1 and T2 relaxation times allow distinguishing the transition between the different phases and justifying their structure. Molecular assembly in the three phases is organized around hydrogen bond networks in which the hydroxyl groups of both TX-100 and n-hexanol, ethylene oxide groups of TX-100, and water participate. 1D 1H NMR spectral changes correlate with the different characteristics of the different phases. As the main characteristics of the lamellar phase we find a very restricted mobility of the molecules involved, and water chemical shifts in 1D 1H NMR spectra of around 5.0 ppm, higher than that of bulk water appearing at 4.7 ppm.

14.
J Phys Chem B ; 119(52): 15929-37, 2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26637018

RESUMO

The formation of emulsions upon reverse self-association of the monodisperse amphiphilic block copolymer poly(ethylene oxide)43-b-poly(ε-caprolactone)14 in cyclohexanone is reported. Such emulsions are not formed in toluene, chloroform, or dichloromethane. We demonstrate by magnetic resonance spectroscopy the active role of the solvent on the stabilization of the emulsions. Cyclohexanone shows high affinity for both blocks, as predicted by the Hansen solubility parameters, so that the copolymer chains are fully dissolved as monomeric chains. In addition, the solvent is able to produce hydrogen bonding with water molecules. Water undergoes molecular exchange between water molecules associated with the polymer and water molecules associated with the solvent, dynamics of major importance for the stabilization of the emulsions. Association of polymeric chains forming reverse aggregates is induced by water over a concentration threshold of 5 wt %. Reverse copolymer aggregates show submicron average hydrodynamic diameters, as seen by dynamic light scattering, depending on the polymer and water concentration.

15.
Eur J Mass Spectrom (Chichester) ; 21(5): 725-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579928

RESUMO

We used positive mode electrospray ionization (ESI) mass spectrometry to examine 540 in-house high-resolution mass spectrometry (HRMS) samples that formed an adducted positive ion. Of the 540 samples, the sodium adduct ([M+Na]⁺) was detected in 480 samples, and the protonated molecule ([M+H]⁺) was detected in 92 samples; both [M+Na]⁺ and [M+H]⁺ were detected in 32 samples. No other adduct ions were predominant. The selectivities of these adducts were evaluated by a two-dimensional plot using topological polar surface area (tPSA) and molecular weight. Two predominant trends were observed: [M+H]⁺ converged around tPSA (Ų) = 20 and molecular weight = 250, and the selectivity for [M+Na]⁺ correlated with the tPSA value. These observations were found to be related to the elemental composition of the sample compounds. From the results obtained by positive mode ESI mass spectroscopy under our experimental conditions, predominant trends were observed with respect to adduct selectivity: compounds containing oxygen atom(s) form [M+Na]⁺, and compounds containing nitrogen but not oxygen atom(s) form [M+H]². Based on these trends, we developed the "Nitrogen-Oxygen rule" (NO rule) to predict the adduct formed by a given compound on positive mode ESI. This NO rule provides a guideline to estimate elemental composition using ESI-HRMS with methanol as mobile phase.


Assuntos
Espectrometria de Massas por Ionização por Electrospray/métodos , Hidrogênio/química , Íons/química , Metanol/química , Oxigênio/química , Sódio/química , Soluções
16.
J Phys Chem B ; 119(41): 13208-17, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26398329

RESUMO

Photochromic solid materials based on the cationic polymer poly(decylviologen) are reported. The solids were obtained by freeze-drying colloidal suspensions of nanocomplexes obtained by mixing aqueous solutions of the polycation with different solutions of polyanions such as poly(sodium 4-styrenesulfonate) or sodium alginate, at a cationic/anionic polymeric charge ratio of 0.7. The photochromic responses of the solid materials fabricated with alginate as complementary charged polyelectrolyte of the cationic polyviologen are faster than those of the solid materials fabricated with poly(sodium 4-styrenesulfonate), achieving coloration kinetics in the order of minutes, and discoloration kinetics in the order of hours for the former. Aromatic-aromatic interactions between the latter polyanion and the polyviologen may stabilize the dicationic form of the viologen derivative, increasing the necessary energy to undergo photoreduction, thus decreasing the reduction kinetics.


Assuntos
Alginatos/química , Polímeros/química , Ácidos Sulfônicos/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Microscopia Eletrônica de Transmissão e Varredura , Espectroscopia de Prótons por Ressonância Magnética
17.
Artigo em Inglês | MEDLINE | ID: mdl-26181282

RESUMO

To provide a practical guideline for the selection of a mass spectrometer ion source, we compared the applicability of three types of ion source: direct analysis in real time (DART), electrospray ionization (ESI) and fast atom bombardment (FAB), using an in-house high-resolution mass spectrometry sample library consisting of approximately 600 compounds. The great majority of the compounds (92%), whose molecular weights (MWs) were broadly distributed between 150 and 1000, were detected using all the ion sources. Nevertheless, some compounds were not detected using specific ion sources. The use of FAB resulted in the highest sample detection rate (>98%), whereas the detection rates obtained using DART and ESI were slightly lower (>96%). A scattergram constructed using MW and topological polar surface area (tPSA) as a substitute for molecular polarity showed that the performance of ESI was weak in the low-MW (<400), low-polarity (tPSA<60) area, whereas the performance of DART was weak in the high-MW (>800) area. These results might provide guidelines for the selection of ion sources for inexperienced mass spectrometry users.

18.
Chemistry ; 20(7): 1893-900, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24431158

RESUMO

AST-type zeolite with a plate morphology can be synthesized by topotactic conversion of a layered silicate (ß-helix-layered silicate; HLS) by using N,N-dimethylpropionamide (DPA) to control the layer stacking of silicate layers and the subsequent interlayer condensation. Treatment of HLS twice with 1) hydrochloric acid/ethanol and 2) dimethylsulfoxide (DMSO) are needed to remove interlayer hydrated Na ions and tetramethylammonium (TMA) ions in intralayer cup-like cavities (intracavity TMA ions), both of which are introduced during the preparation of HLS. The utilization of an amide molecule is effective for the control of the stacking sequence of silicate layers. This method could be applicable to various layered silicates that cannot be topotactically converted into three-dimensional networks by simple interlayer condensation by judicious choice of amide molecules.

20.
Biophysics (Nagoya-shi) ; 6: 53-57, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-27857585

RESUMO

Ferromagnetic resonance (FMR) with an electron spin resonance (ESR) apparatus was investigated for super-paramagnetic particles within Daphnia resting eggs. High-field (HF) resonance lines near g=2 resulted from single superparamagnetic particles, were detected from ESR spectra of Daphnia resting eggs. The size of isolated superparamagnetic particles within Daphnia resting eggs was calculated to be approximately 13 nm in diameter by analysis of the temperature dependence of the HF line width. Small-angle X-ray scattering (SAXS) analysis of Daphnia resting eggs also showed that average size of superparamagnetic particles in diameter, equivalent to magnetite, was approximately 13 nm. The combination of FMR and SAXS measurement is very effective in estimating the size of superparamagnetic particles in biological organisms, with difficulties of preparing for samples for measurement by electron microscopy. However, Chlorella, with that Daphnia were raised, did not show FMR spectra, showing no magnetic particles within Daphnia resting eggs. Therefore, it suggested that superparamagnetic particles within Daphnia resting eggs, were mineralized in Daphnia as the result of biomineralization of Fe originated from Chlorella.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...