Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 27(4): 656-665, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378993

RESUMO

Disease, injury and aging induce pathological reactive astrocyte states that contribute to neurodegeneration. Modulating reactive astrocytes therefore represent an attractive therapeutic strategy. Here we describe the development of an astrocyte phenotypic screening platform for identifying chemical modulators of astrocyte reactivity. Leveraging this platform for chemical screening, we identify histone deacetylase 3 (HDAC3) inhibitors as effective suppressors of pathological astrocyte reactivity. We demonstrate that HDAC3 inhibition reduces molecular and functional characteristics of reactive astrocytes in vitro. Transcriptional and chromatin mapping studies show that HDAC3 inhibition disarms pathological astrocyte gene expression and function while promoting the expression of genes associated with beneficial astrocytes. Administration of RGFP966, a small molecule HDAC3 inhibitor, blocks reactive astrocyte formation and promotes neuroprotection in vivo in mice. Collectively, these results establish a platform for discovering modulators of reactive astrocyte states, inform the mechanisms that control astrocyte reactivity and demonstrate the therapeutic benefits of modulating astrocyte reactivity for neurodegenerative diseases.


Assuntos
Astrócitos , Doenças Neurodegenerativas , Camundongos , Animais , Astrócitos/metabolismo , Doenças Neurodegenerativas/metabolismo , Envelhecimento/metabolismo , Sistema Nervoso Central
2.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333182

RESUMO

Enteric glia are the predominant cell type in the enteric nervous system yet their identities and roles in gastrointestinal function are not well classified. Using our optimized single nucleus RNA-sequencing method, we identified distinct molecular classes of enteric glia and defined their morphological and spatial diversity. Our findings revealed a functionally specialized biosensor subtype of enteric glia that we call "hub cells." Deletion of the mechanosensory ion channel PIEZO2 from adult enteric glial hub cells, but not other subtypes of enteric glia, led to defects in intestinal motility and gastric emptying in mice. These results provide insight into the multifaceted functions of different enteric glial cell subtypes in gut health and emphasize that therapies targeting enteric glia could advance the treatment of gastrointestinal diseases.

3.
RSC Chem Biol ; 3(1): 56-68, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35128409

RESUMO

While the cholesterol biosynthesis pathway has been extensively studied, recent work has forged new links between inhibition of specific sterol pathway enzymes, accumulation of their unique sterol substrates, and biological areas as diverse as cancer, immunology, and neurodegenerative disease. We recently reported that dozens of small molecules enhance formation of oligodendrocytes, a glial cell type lost in multiple sclerosis, by inhibiting CYP51, Sterol 14-reductase, or EBP and inducing cellular accumulation of their 8,9-unsaturated sterol substrates. Several adjacent pathway enzymes also have 8,9-unsaturated sterol substrates but have not yet been evaluated as potential targets for oligodendrocyte formation or in many other biological contexts, in part due to a lack of available small-molecule probes. Here, we show that genetic suppression of SC4MOL or HSD17B7 increases the formation of oligodendrocytes. Additionally, we have identified and optimized multiple potent new series of SC4MOL and HSD17B7 inhibitors and shown that these small molecules enhance oligodendrocyte formation. SC4MOL inhibitor CW4142 induced accumulation of SC4MOL's sterol substrates in mouse brain and represents an in vivo probe of SC4MOL activity. Mechanistically, the cellular accumulation of these 8,9-unsaturated sterols represents a central driver of enhanced oligodendrocyte formation, as exogenous addition of purified SC4MOL and HSD17B7 substrates but not their 8,9-saturated analogs promotes OPC differentiation. Our work validates SC4MOL and HSD17B7 as novel targets for promoting oligodendrocyte formation, underlines a broad role for 8,9-unsaturated sterols as enhancers of oligodendrocyte formation, and establishes the first high-quality small molecules targeting SC4MOL and HSD17B7 as novel tools for probing diverse areas of biology.

4.
Nature ; 585(7825): 397-403, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32610343

RESUMO

Mutations in PLP1, the gene that encodes proteolipid protein (PLP), result in failure of myelination and neurological dysfunction in the X-chromosome-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD)1,2. Most PLP1 mutations, including point mutations and supernumerary copy variants, lead to severe and fatal disease. Patients who lack PLP1 expression, and Plp1-null mice, can display comparatively mild phenotypes, suggesting that PLP1 suppression might provide a general therapeutic strategy for PMD1,3-5. Here we show, using CRISPR-Cas9 to suppress Plp1 expression in the jimpy (Plp1jp) point-mutation mouse model of severe PMD, increased myelination and restored nerve conduction velocity, motor function and lifespan of the mice to wild-type levels. To evaluate the translational potential of this strategy, we identified antisense oligonucleotides that stably decrease the levels of Plp1 mRNA and PLP protein throughout the neuraxis in vivo. Administration of a single dose of Plp1-targeting antisense oligonucleotides in postnatal jimpy mice fully restored oligodendrocyte numbers, increased myelination, improved motor performance, normalized respiratory function and extended lifespan up to an eight-month end point. These results suggest that PLP1 suppression could be developed as a treatment for PMD in humans. More broadly, we demonstrate that oligonucleotide-based therapeutic agents can be delivered to oligodendrocytes in vivo to modulate neurological function and lifespan, establishing a new pharmaceutical modality for myelin disorders.


Assuntos
Modelos Animais de Doenças , Proteína Proteolipídica de Mielina/deficiência , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/terapia , Animais , Sistemas CRISPR-Cas , Feminino , Edição de Genes , Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Atividade Motora/genética , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Doença de Pelizaeus-Merzbacher/metabolismo , Mutação Puntual , Testes de Função Respiratória , Análise de Sobrevida
5.
Nat Commun ; 9(1): 3708, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30213958

RESUMO

Oligodendrocyte dysfunction underlies many neurological disorders, but rapid assessment of mutation-specific effects in these cells has been impractical. To enable functional genetics in oligodendrocytes, here we report a highly efficient method for generating oligodendrocytes and their progenitors from mouse embryonic and induced pluripotent stem cells, independent of mouse strain or mutational status. We demonstrate that this approach, when combined with genome engineering, provides a powerful platform for the expeditious study of genotype-phenotype relationships in oligodendrocytes.


Assuntos
Linhagem da Célula , Oligodendroglia/citologia , Células-Tronco Pluripotentes/citologia , Alelos , Animais , Sistemas CRISPR-Cas , Diferenciação Celular/genética , Análise Mutacional de DNA , Estudos de Associação Genética , Engenharia Genética , Genótipo , Células-Tronco Pluripotentes Induzidas , Lentivirus , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo
6.
Stem Cell Reports ; 11(3): 711-726, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30146490

RESUMO

Pelizaeus-Merzbacher disease (PMD) is a fatal X-linked disorder caused by loss of myelinating oligodendrocytes and consequent hypomyelination. The underlying cellular and molecular dysfunctions are not fully defined, but therapeutic enhancement of oligodendrocyte survival could restore functional myelination in patients. Here we generated pure, scalable quantities of induced pluripotent stem cell-derived oligodendrocyte progenitor cells (OPCs) from a severe mouse model of PMD, Plp1jimpy. Temporal phenotypic and transcriptomic studies defined an early pathological window characterized by endoplasmic reticulum (ER) stress and cell death as OPCs exit their progenitor state. High-throughput phenotypic screening identified a compound, Ro 25-6981, which modulates the ER stress response and rescues mutant oligodendrocyte survival in jimpy, in vitro and in vivo, and in human PMD oligocortical spheroids. Surprisingly, increasing oligodendrocyte survival did not restore subsequent myelination, revealing a second pathological phase. Collectively, our work shows that PMD oligodendrocyte loss can be rescued pharmacologically and defines a need for multifactorial intervention to restore myelination.


Assuntos
Células Precursoras de Oligodendrócitos/patologia , Doença de Pelizaeus-Merzbacher/patologia , Animais , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos , Mutação , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/metabolismo , Transcriptoma
7.
Nat Methods ; 15(9): 700-706, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30046099

RESUMO

Cerebral organoids provide an accessible system for investigations of cellular composition, interactions, and organization but have lacked oligodendrocytes, the myelinating glia of the central nervous system. Here we reproducibly generated oligodendrocytes and myelin in 'oligocortical spheroids' derived from human pluripotent stem cells. Molecular features consistent with those of maturing oligodendrocytes and early myelin appeared by week 20 in culture, with further maturation and myelin compaction evident by week 30. Promyelinating drugs enhanced the rate and extent of oligodendrocyte generation and myelination, and spheroids generated from human subjects with a genetic myelin disorder recapitulated human disease phenotypes. Oligocortical spheroids provide a versatile platform for studies of myelination of the developing central nervous system and offer new opportunities for disease modeling and therapeutic development.


Assuntos
Córtex Cerebral/citologia , Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Esferoides Celulares/citologia , Animais , Diferenciação Celular , Humanos , Oligodendroglia/metabolismo , Células-Tronco Pluripotentes/citologia , Esferoides Celulares/metabolismo
8.
Nature ; 560(7718): 372-376, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30046109

RESUMO

Regeneration of myelin is mediated by oligodendrocyte progenitor cells-an abundant stem cell population in the central nervous system (CNS) and the principal source of new myelinating oligodendrocytes. Loss of myelin-producing oligodendrocytes in the CNS underlies a number of neurological diseases, including multiple sclerosis and diverse genetic diseases1-3. High-throughput chemical screening approaches have been used to identify small molecules that stimulate the formation of oligodendrocytes from oligodendrocyte progenitor cells and functionally enhance remyelination in vivo4-10. Here we show that a wide range of these pro-myelinating small molecules function not through their canonical targets but by directly inhibiting CYP51, TM7SF2, or EBP, a narrow range of enzymes within the cholesterol biosynthesis pathway. Subsequent accumulation of the 8,9-unsaturated sterol substrates of these enzymes is a key mechanistic node that promotes oligodendrocyte formation, as 8,9-unsaturated sterols are effective when supplied to oligodendrocyte progenitor cells in purified form whereas analogous sterols that lack this structural feature have no effect. Collectively, our results define a unifying sterol-based mechanism of action for most known small-molecule enhancers of oligodendrocyte formation and highlight specific targets to propel the development of optimal remyelinating therapeutics.


Assuntos
Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Remielinização , Esteróis/química , Esteróis/metabolismo , Inibidores de 14-alfa Desmetilase/farmacologia , Animais , Colesterol/biossíntese , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Imidazóis/farmacologia , Masculino , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla , Oligodendroglia/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Remielinização/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Esteroide Isomerases/antagonistas & inibidores , Esterol 14-Desmetilase/metabolismo , Especificidade por Substrato
9.
PLoS Genet ; 7(5): e1002063, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21625621

RESUMO

Sphingolipids, lipids with a common sphingoid base (also termed long chain base) backbone, play essential cellular structural and signaling functions. Alterations of sphingolipid levels have been implicated in many diseases, including neurodegenerative disorders. However, it remains largely unclear whether sphingolipid changes in these diseases are pathological events or homeostatic responses. Furthermore, how changes in sphingolipid homeostasis shape the progression of aging and neurodegeneration remains to be clarified. We identified two mouse strains, flincher (fln) and toppler (to), with spontaneous recessive mutations that cause cerebellar ataxia and Purkinje cell degeneration. Positional cloning demonstrated that these mutations reside in the Lass1 gene. Lass1 encodes (dihydro)ceramide synthase 1 (CerS1), which is highly expressed in neurons. Both fln and to mutations caused complete loss of CerS1 catalytic activity, which resulted in a reduction in sphingolipid biosynthesis in the brain and dramatic changes in steady-state levels of sphingolipids and sphingoid bases. In addition to Purkinje cell death, deficiency of CerS1 function also induced accumulation of lipofuscin with ubiquitylated proteins in many brain regions. Our results demonstrate clearly that ceramide biosynthesis deficiency can cause neurodegeneration and suggest a novel mechanism of lipofuscin formation, a common phenomenon that occurs during normal aging and in some neurodegenerative diseases.


Assuntos
Ceramidas/biossíntese , Lipofuscina/metabolismo , Células de Purkinje/metabolismo , Animais , Sequência de Bases , Células COS , Diferenciação Celular , Ceramidas/deficiência , Chlorocebus aethiops , Homeostase , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Células de Purkinje/citologia , Esfingosina N-Aciltransferase/genética , Esfingosina N-Aciltransferase/metabolismo
10.
J Assoc Res Otolaryngol ; 11(2): 223-34, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19936834

RESUMO

The role of innate immunity and macrophage recruitment to the inner ear after hair cell injury is a subject where little is known. In this paper, we demonstrate recruitment of monocytes and macrophages to the inner ear after kanamycin. We also examined the effect of fractalkine receptor (CX3CR1) deletion in kanamycin ototoxicity. We observed more functional and structural damage in CX3CR1 null mice compared to wild-type and heterozygous littermates. In order to determine if increased susceptibility to kanamycin resulted from CX3CR1 deletion from cochlear leukocytes, we created bone marrow chimeras by transplanting CX3CR1-null bone marrow into wild-type mice whose native bone marrow was ablated by lethal irradiation. These mice were then treated with kanamycin sulfate. Auditory brainstem responses (ABR), hair cell counts, and numbers of macrophages recruited to the cochlea were recorded in irradiated mice that received either wild-type, CX3CR1 heterozygous, or CX3CR1 knockout bone marrow. A strong correlation was present between numbers of macrophages and hair cell death in recipients transplanted with CX3CR1 null marrow. No correlation between macrophage number and hair cell loss was present in mice transplanted with wild-type or CX3CR1 heterozygous marrow. We suggest that CX3CR1 plays a role in modulating the detrimental effects of cochlear macrophages after kanamycin ototoxicity. Our data point to the possibility that CX3CR1-deficient cochlear macrophages exacerbate kanamycin ototoxicity while CX3CR1-expressing monocytes do not.


Assuntos
Cóclea/citologia , Células Ciliadas Auditivas Externas/citologia , Perda Auditiva/fisiopatologia , Canamicina/toxicidade , Macrófagos/fisiologia , Receptores de Quimiocinas/genética , Animais , Limiar Auditivo/fisiologia , Medula Óssea , Receptor 1 de Quimiocina CX3C , Sobrevivência Celular/fisiologia , Cóclea/efeitos dos fármacos , Cóclea/imunologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Perda Auditiva/imunologia , Perda Auditiva/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Inibidores da Síntese de Proteínas/toxicidade , Quimera por Radiação , Receptores de Quimiocinas/metabolismo
11.
J Neurosci ; 28(28): 7174-83, 2008 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-18614687

RESUMO

The serine/threonine kinase Akt regulates multiple cellular functions. The current studies identify a new role for Akt in CNS myelination. In earlier studies on cultured oligodendrocytes, we showed that neuregulin signals through phosphatidylinositol-3'-OH kinase and Akt to enhance survival of oligodendrocytes. However, when transgenic animals were generated that overexpressed constitutively active Akt in oligodendrocytes and their progenitor cells, no enhanced survival of oligodendrocytes or progenitors was found. No alteration in the proliferation or death of progenitors was noted. In contrast, the major impact of Akt overexpression in oligodendrocytes was enhanced myelination. Most interestingly, oligodendrocytes in these mice continued actively myelinating throughout life. Thus, expression of constitutively active Akt in oligodendrocytes and their progenitor cells generated no more oligodendrocytes, but dramatically more myelin. The increased myelination continued as these mice aged, resulting in enlarged optic nerves and white matter areas. In older animals with enlarged white matter areas, the density of oligodendrocytes was reduced, but because of the increased area, the total number of oligodendrocytes remained comparable with wild-type controls. Interestingly, in these animals, overexpression of Akt in Schwann cells did not impact myelination. Thus, in vivo, constitutively active Akt enhances CNS myelination but not PNS myelination and has no impact developmentally on oligodendrocyte number. Understanding the unique aspects of Akt signal transduction in oligodendrocytes that lead to myelination rather than uncontrolled proliferation of oligodendrocyte progenitor cells may have important implications for understanding remyelination in the adult nervous system.


Assuntos
Sistema Nervoso Central/fisiologia , Regulação da Expressão Gênica/fisiologia , Bainha de Mielina/fisiologia , Proteína Oncogênica v-akt/fisiologia , Fatores Etários , Animais , Bromodesoxiuridina/metabolismo , Morte Celular/fisiologia , Proliferação de Células , Sistema Nervoso Central/citologia , Proteínas de Fluorescência Verde/biossíntese , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão/métodos , Proteína Proteolipídica de Mielina/genética , Bainha de Mielina/ultraestrutura , Oligodendroglia/fisiologia , Oligodendroglia/ultraestrutura , Proteína Oncogênica v-akt/genética , Nervo Óptico/fisiologia , Nervo Óptico/ultraestrutura , Nervo Isquiático/fisiologia , Nervo Isquiático/ultraestrutura , Serina/metabolismo , Treonina/metabolismo
12.
J Comp Neurol ; 506(6): 930-42, 2008 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-18085589

RESUMO

Cochlear macrophages have been shown to accumulate in the murine cochlea following acoustic trauma. This investigation was performed to determine whether cochlear macrophages could be replaced by donor transplantation of bone marrow precursors. Lethally irradiated C57BL/6 mice were transplanted with hematopoietic precursors from CX3CR1(GFP/GFP) fetal mice. CX3CR1(GFP/GFP) mice express green fluorescent protein (GFP) in monocytes and macrophages and possess no functional CX3CR1. Donor monocytes and macrophages can be easily traced in the wild-type recipient with fluorescent microscopy. We studied mice at 2-16 weeks after transplantation to assess repopulation of cochlear macrophages. A separate group of chimeras was exposed to octave band noise (8-16 kHz for 2 hours) 2 weeks after transplantation to evaluate the migration properties of donor hematopoietic precursors. We found that macrophages derived from donor hematopoietic precursors appeared in cochlea 3-4 weeks after transplantation and increased week by week. Noise exposure induced a massive accumulation of leukocytes, particularly in the spiral ligament of the basal turn. There was no difference between CX3CR1(GFP/GFP) donor/wild-type recipient chimeras and the wild-type donor/wild-type recipient chimeras in hearing thresholds, accumulation of cochlear macrophages, or tissue injury after noise exposure. These data indicate that cochlear macrophages are derived from bone marrow precursors and that they are an exchanging and migratory population. Furthermore, CX3CR1 in hematopoietic precursors is not necessary for macrophage migration into cochlea and when deleted in this cell population, the absence of CX3CR1 does not substantially effect the outcomes after noise.


Assuntos
Diferenciação Celular/fisiologia , Cóclea/citologia , Células-Tronco Hematopoéticas/fisiologia , Macrófagos/fisiologia , Receptores de Quimiocinas/fisiologia , Estimulação Acústica , Animais , Limiar Auditivo/fisiologia , Receptor 1 de Quimiocina CX3C , Cóclea/cirurgia , Relação Dose-Resposta à Radiação , Embrião de Mamíferos , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Proteínas de Fluorescência Verde/biossíntese , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Radiação , Receptores de Quimiocinas/deficiência , Transplante de Células-Tronco/métodos , Fatores de Tempo
13.
Neurochem Res ; 32(2): 343-51, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17191136

RESUMO

Jimpy (Plp(jp)) is an X-linked recessive mutation in mice that causes CNS dysmyelination and early death in affected males. It results from a point mutation in the acceptor splice site of myelin proteolipid protein (Plp) exon 5, producing transcripts that are missing exon 5, with a concomitant shift in the downstream reading frame. Expression of the mutant PLP product in Plp(jp) males leads to hypomyelination and oligodendrocyte death. Expression of our Plp-lacZ fusion gene, PLP(+)Z, in transgenic mice is an excellent readout for endogenous Plp transcriptional activity. The current studies assess expression of the PLP(+)Z transgene in the Plp(jp) background. These studies demonstrate that expression of the transgene is decreased in both the central and peripheral nervous systems of affected Plp(jp) males. Thus, expression of mutated PLP protein downregulates Plp gene activity both in oligodendrocytes, which eventually die, and in Schwann cells, which are apparently unaffected in Plp(jp) mice.


Assuntos
Sistema Nervoso Central/metabolismo , Proteína Proteolipídica de Mielina/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Sistema Nervoso Periférico/metabolismo , Animais , Western Blotting , Sistema Nervoso Central/crescimento & desenvolvimento , Regulação para Baixo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Óperon Lac/genética , Masculino , Camundongos , Camundongos Jimpy , Camundongos Transgênicos , Proteína Proteolipídica de Mielina/genética , Proteínas do Tecido Nervoso/genética , Oligodendroglia/metabolismo , Células de Schwann/metabolismo , Transgenes/genética , beta-Galactosidase/biossíntese
14.
J Comp Neurol ; 476(2): 113-29, 2004 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-15248193

RESUMO

We describe the genetic and neurological features of toppler, a spontaneous autosomal mutation that appeared in a colony of FVB/N mice and that manifests as severe ataxia appearing at around 12 days of age, worsening with age. The lifespan of affected mice is 8-12 months, with occasional mice living longer. Both homozygous males and females are fertile, and females are able to nurture litters. Histological examination of brain revealed no striking abnormalities other than the loss of cerebellar Purkinje cells. The toppler mutation was mapped to mouse chromosome 8, and to assess whether it was novel or a recurrence of a previously described chromosome 8 mouse mutant, toppler mice were crossed with the nervous and tottering mouse mutants. These studies demonstrate that toppler is a unique mouse mutation. Purkinje cell abnormalities in toppler mice were obvious around postnatal day (P) 14, i.e., toppler Purkinje cells already exhibited abnormal morphology. Staining for calbindin, a calcium binding protein enriched in Purkinje cells, showed altered dendritic morphology. Between P14 and P30, dramatic Purkinje cell loss occurred, although there were differences in the degree of Purkinje cell loss in each lobule. At P30, the surviving Purkinje cells expressed zebrin II. From P30 through 6 months, many of the remaining Purkinje cells gradually degenerated. Purkinje cell loss was analyzed by terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL), and Purkinje cells were TUNEL-positive most abundantly at P21. In addition, Bergmann glia were TUNEL positive at P21, and they expressed activated caspase-3 at earlier time points. Interestingly, despite the apparent death of some Bergmann glia, there was up-regulation of glial fibrillary acidic protein, expressed in astrocytes as well as Bergmann glia. Given the changes in both Purkinje cells and glia in toppler cerebellum, this may be a very useful model in which to investigate the developmental interaction of Purkinje cells and Bergmann glia.


Assuntos
Ataxia/genética , Ataxia/patologia , Cerebelo/patologia , Camundongos Mutantes Neurológicos , Células de Purkinje/patologia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/metabolismo , Ataxia/metabolismo , Ataxia/fisiopatologia , Morte Celular , Sistema Nervoso Central/patologia , Cerebelo/fisiopatologia , Mapeamento Cromossômico , Cruzamentos Genéticos , Feminino , Frutose-Bifosfato Aldolase/metabolismo , Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/patologia , Fenótipo , Células de Purkinje/metabolismo , Retina/patologia , Degenerações Espinocerebelares/genética
15.
J Neurosci ; 22(3): 876-85, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11826117

RESUMO

Transgenic mice expressing enhanced green fluorescent protein (EGFP) driven by the mouse myelin proteolipid protein (PLP) gene promoter have been developed to investigate cells in the oligodendrocyte lineage. Transgene expression is consistent with the developmental expression of PLP, with cells at all stages of oligodendrocyte differentiation clearly visualized. These animals were analyzed to establish the time course of oligodendrocyte progenitor migration, proliferation, and differentiation in neonatal cortex. In these animals, two populations of NG2 proteoglycan-positive oligodendrocyte progenitor cells were identified that exist in postnatal subventricular zone and cortex. These two populations are distinguished by the presence or absence of PLP gene expression. Thus, PLP gene expression defines a subpopulation of NG2-positive cells from very early postnatal ages, which migrates toward the pial surface and proliferates in situ. EGFP(+)/NG2(+) cells are present in the cortex from postnatal day 1, and they remain in the cortex as undifferentiated oligodendrocyte progenitors for up to 3 weeks before myelination begins. These data could be explained by the presence of an important inhibitor of oligodendrocyte differentiation in the cortex during this period, which is downregulated in a region-specific manner to allow myelination. On the other hand, it is possible that oligodendrocyte progenitor cells remain undifferentiated in cortex until an essential signal is produced in situ to induce differentiation.


Assuntos
Antígenos/biossíntese , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Proteína Proteolipídica de Mielina/genética , Oligodendroglia/metabolismo , Regiões Promotoras Genéticas/fisiologia , Proteoglicanas/biossíntese , Animais , Animais Recém-Nascidos , Diferenciação Celular , Divisão Celular/fisiologia , Linhagem da Célula , Movimento Celular/fisiologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Córtex Cerebral/citologia , Proteínas de Fluorescência Verde , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Oligodendroglia/citologia , Especificidade de Órgãos/fisiologia , Sistema Nervoso Periférico/citologia , Sistema Nervoso Periférico/embriologia , Sistema Nervoso Periférico/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Células-Tronco/classificação , Células-Tronco/citologia , Células-Tronco/metabolismo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...