Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(9): 2839-2845, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38395430

RESUMO

Semiconductor quantum dots are promising candidates for the generation of nonclassical light. Coupling a quantum dot to a device capable of providing polarization-selective enhancement of optical transitions is highly beneficial for advanced functionalities, such as efficient resonant driving schemes or applications based on optical cyclicity. Here, we demonstrate broadband polarization-selective enhancement by coupling a quantum dot emitting in the telecom O-band to an elliptical bullseye resonator. We report bright single-photon emission with a degree of linear polarization of 96%, Purcell factor of 3.9 ± 0.6, and count rates up to 3 MHz. Furthermore, we present a measurement of two-photon interference without any external polarization filtering. Finally, we demonstrate compatibility with compact Stirling cryocoolers by operating the device at temperatures up to 40 K. These results represent an important step toward practical integration of optimal quantum dot photon sources in deployment-ready setups.

2.
Sci Adv ; 9(48): eadj5873, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38039373

RESUMO

Satellite quantum key distribution (SatQKD) intermediated by a trusted satellite in a low-Earth orbit to ground stations along the satellite's path allows remote users to connect securely. To establish a secure connection, a SatQKD session must be conducted to each user over a dynamically changing free-space link, all within just a few hundred seconds. Because of the short time and large losses under which the QKD protocol will be implemented, it has not yet been possible to form a complete key by transmitting all the relevant information required within a single overpass of the satellite. Here, we demonstrate a real-time QKD system that is capable of forming a 4.58-megabit secure key between two nodes within an emulated satellite overpass. We anticipate that our system will set the stage for practical implementations of intercontinental quantum secure communications that can operate over large networks of nodes and enable the secure transmission of data globally.

3.
Nanotechnology ; 33(30)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35395644

RESUMO

We investigated metal-organic vapor phase epitaxy grown droplet epitaxy (DE) and Stranski-Krastanov (SK) InAs/InP quantum dots (QDs) by cross-sectional scanning tunneling microscopy (X-STM). We present an atomic-scale comparison of structural characteristics of QDs grown by both growth methods proving that the DE yields more uniform and shape-symmetric QDs. Both DE and SKQDs are found to be truncated pyramid-shaped with a large and sharp top facet. We report the formation of localized etch pits for the first time in InAs/InP DEQDs with atomic resolution. We discuss the droplet etching mechanism in detail to understand the formation of etch pits underneath the DEQDs. A summary of the effect of etch pit size and position on fine structure splitting (FSS) is provided via thek·ptheory. Finite element (FE) simulations are performed to fit the experimental outward relaxation and lattice constant profiles of the cleaved QDs. The composition of QDs is estimated to be pure InAs obtained by combining both FE simulations and X-STM results. The preferential formation of {136} and {122} side facets was observed for the DEQDs. The formation of a DE wetting layer from As-P surface exchange is compared with the standard SKQDs wetting layer. The detailed structural characterization performed in this work provides valuable feedback for further growth optimization to obtain QDs with even lower FSS for applications in quantum technology.

4.
Opt Express ; 30(7): 10919-10928, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473046

RESUMO

The development of efficient sources of single photons and entangled photon pairs emitting in the low-loss wavelength region around 1550 nm is crucial for long-distance quantum communication. Moreover, direct fiber coupling and electrical carrier injection are highly desirable for deployment in compact and user-friendly systems integrated with the existing fiber infrastructure. Here we present a detailed design study of circular Bragg gratings fabricated in InP slabs and operating in the telecom C-band. These devices enable the simultaneous enhancement of the X and XX spectral lines, with collection efficiency in numerical aperture 0.65 close to 90% for the wavelength range 1520 - 1580 nm and Purcell factor up to 15. We also investigate the coupling into a single mode fiber, which exceeds 70% in UHNA4. Finally, we propose a modified device design directly compatible with electrical carrier injection, reporting Purcell factors up to 20 and collection efficiency in numerical aperture 0.65 close to 70% for the whole telecom C-band.

6.
Nat Commun ; 13(1): 157, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013290

RESUMO

Quantum mechanics allows distribution of intrinsically secure encryption keys by optical means. Twin-field quantum key distribution is one of the most promising techniques for its implementation on long-distance fiber networks, but requires stabilizing the optical length of the communication channels between parties. In proof-of-principle experiments based on spooled fibers, this was achieved by interleaving the quantum communication with periodical stabilization frames. In this approach, longer duty cycles for the key streaming come at the cost of a looser control of channel length, and a successful key-transfer using this technique in real world remains a significant challenge. Using interferometry techniques derived from frequency metrology, we develop a solution for the simultaneous key streaming and channel length control, and demonstrate it on a 206 km field-deployed fiber with 65 dB loss. Our technique reduces the quantum-bit-error-rate contributed by channel length variations to <1%, representing an effective solution for real-world quantum communications.

7.
Opt Express ; 28(24): 36838-36848, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379768

RESUMO

Quantum networks are essential for realising distributed quantum computation and quantum communication. Entangled photons are a key resource, with applications such as quantum key distribution, quantum relays, and quantum repeaters. All components integrated in a quantum network must be synchronised and therefore comply with a certain clock frequency. In quantum key distribution, the most mature technology, clock rates have reached and exceeded 1GHz. Here we show the first electrically pulsed sub-Poissonian entangled photon source compatible with existing fiber networks operating at this clock rate. The entangled LED is based on InAs/InP quantum dots emitting in the main telecom window, with a multi-photon probability of less than 10% per emission cycle and a maximum entanglement fidelity of 89%. We use this device to demonstrate GHz clocked distribution of entangled qubits over an installed fiber network between two points 4.6km apart.

8.
Sci Rep ; 9(1): 4111, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858479

RESUMO

Entangled light sources are considered as core technology for multiple quantum network architectures. Of particular interest are sources that are based on a single quantum system as these offer intrinsic security due to the sub-Poissonian nature of the photon emission process. This is important for applications in quantum communication where multi-pair emission generally compromises performance. A large variety of sources has been developed, but the generated photons remained far from being utilized in established standard fiber networks, mainly due to lack of compatibility with telecommunication wavelengths. In this regard, single semiconductor quantum dots are highly promising photon pair sources as they can be engineered for direct emission at telecom wavelengths. In this work we demonstrate the feasibility of this approach. We report a week-long transmission of polarization-entangled photons from a single InAs/GaAs quantum dot over a metropolitan network fiber. The photons are in the telecommunication O-band, favored for fiber optical communication. We employ a polarization stabilization system overcoming changes of birefringence introduced by 18.23 km of installed fiber. Stable transmission of polarization-encoded entanglement with a high fidelity of 91% is achieved, facilitating the operation of sub-Poissonian quantum light sources over existing fiber networks.

9.
Sci Rep ; 6: 35149, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27734921

RESUMO

Quantum key distribution (QKD) provides an attractive means for securing communications in optical fibre networks. However, deployment of the technology has been hampered by the frequent need for dedicated dark fibres to segregate the very weak quantum signals from conventional traffic. Up until now the coexistence of QKD with data has been limited to bandwidths that are orders of magnitude below those commonly employed in fibre optic communication networks. Using an optimised wavelength divisional multiplexing scheme, we transport QKD and the prevalent 100 Gb/s data format in the forward direction over the same fibre for the first time. We show a full quantum encryption system operating with a bandwidth of 200 Gb/s over a 100 km fibre. Exploring the ultimate limits of the technology by experimental measurements of the Raman noise, we demonstrate it is feasible to combine QKD with 10 Tb/s of data over a 50 km link. These results suggest it will be possible to integrate QKD and other quantum photonic technologies into high bandwidth data communication infrastructures, thereby allowing their widespread deployment.

10.
Sci Adv ; 2(4): e1501256, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27152337

RESUMO

The generation of coherent and indistinguishable single photons is a critical step for photonic quantum technologies in information processing and metrology. A promising system is the resonant optical excitation of solid-state emitters embedded in wavelength-scale three-dimensional cavities. However, the challenge here is to reject the unwanted excitation to a level below the quantum signal. We demonstrate this using coherent photon scattering from a quantum dot in a micropillar. The cavity is shown to enhance the fraction of light that is resonantly scattered toward unity, generating antibunched indistinguishable photons that are 16 times narrower than the time-bandwidth limit, even when the transition is near saturation. Finally, deterministic excitation is used to create two-photon N00N states with which we make superresolving phase measurements in a photonic circuit.


Assuntos
Óptica e Fotônica/métodos , Fótons , Pontos Quânticos , Simulação por Computador , Luz , Espalhamento de Radiação
11.
Cryst Growth Des ; 16(2): 1010-1016, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-27065755

RESUMO

Non- and semipolar GaN have great potential to improve the efficiency of light emitting devices due to much reduced internal electric fields. However, heteroepitaxial GaN growth in these crystal orientations suffers from very high dislocation and stacking faults densities. Here, we report a facile method to obtain low defect density non- and semipolar heteroepitaxial GaN via selective area epitaxy using self-assembled multilayers of silica nanospheres (MSN). Nonpolar (11-20) and semipolar (11-22) GaN layers with high crystal quality have been achieved by epitaxial integration of the MSN and a simple one-step overgrowth process, by which both dislocation and basal plane stacking fault densities can be significantly reduced. The underlying defect reduction mechanisms include epitaxial growth through the MSN covered template, island nucleation via nanogaps in the MSN, and lateral overgrowth and coalescence above the MSN. InGaN/GaN multiple quantum wells structures grown on a nonpolar GaN/MSN template show more than 30-fold increase in the luminescence intensity compared to a control sample without the MSN. This self-assembled MSN technique provides a new platform for epitaxial growth of nitride semiconductors and offers unique opportunities for improving the material quality of GaN grown on other orientations and foreign substrates or heteroepitaxial growth of other lattice-mismatched materials.

12.
Sci Rep ; 5: 18121, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26656307

RESUMO

Optical access networks connect multiple endpoints to a common network node via shared fibre infrastructure. They will play a vital role to scale up the number of users in quantum key distribution (QKD) networks. However, the presence of power splitters in the commonly used passive network architecture makes successful transmission of weak quantum signals challenging. This is especially true if QKD and data signals are multiplexed in the passive network. The splitter introduces an imbalance between quantum signal and Raman noise, which can prevent the recovery of the quantum signal completely. Here we introduce a method to overcome this limitation and demonstrate coexistence of multi-user QKD and full power data traffic from a gigabit passive optical network (GPON) for the first time. The dual feeder implementation is compatible with standard GPON architectures and can support up to 128 users, highlighting that quantum protected GPON networks could be commonplace in the future.

13.
Sci Rep ; 5: 15732, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26506865

RESUMO

Epitaxial InAs quantum dots grown on GaAs substrate are being used in several applications ranging from quantum communications to solar cells. The growth mechanism of these dots also helps us to explore fundamental aspects of self-organized processes. Here we show that composition and strain profile of the quantum dots can be tuned by controlling in-plane density of the dots over the substrate with the help of substrate-temperature profile. The compositional profile extracted from grazing incidence x-ray measurements show substantial amount of inter-diffusion of Ga and In within the QD as a function of height in the low-density region giving rise to higher variation of lattice parameters. The QDs grown with high in-plane density show much less spread in lattice parameter giving almost flat density of In over the entire height of an average QD and much narrower photoluminescence (PL) line. The results have been verified with three different amounts of In deposition giving systematic variation of the In composition as a function of average quantum dot height and average energy of PL emission.

14.
Nature ; 501(7465): 69-72, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24005413

RESUMO

The theoretically proven security of quantum key distribution (QKD) could revolutionize the way in which information exchange is protected in the future. Several field tests of QKD have proven it to be a reliable technology for cryptographic key exchange and have demonstrated nodal networks of point-to-point links. However, until now no convincing answer has been given to the question of how to extend the scope of QKD beyond niche applications in dedicated high security networks. Here we introduce and experimentally demonstrate the concept of a 'quantum access network': based on simple and cost-effective telecommunication technologies, the scheme can greatly expand the number of users in quantum networks and therefore vastly broaden their appeal. We show that a high-speed single-photon detector positioned at a network node can be shared between up to 64 users for exchanging secret keys with the node, thereby significantly reducing the hardware requirements for each user added to the network. This point-to-multipoint architecture removes one of the main obstacles restricting the widespread application of QKD. It presents a viable method for realizing multi-user QKD networks with efficient use of resources, and brings QKD closer to becoming a widespread technology.

15.
Nat Commun ; 4: 1522, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23443550

RESUMO

Single spins in the solid state offer a unique opportunity to store and manipulate quantum information, and to perform quantum-enhanced sensing of local fields and charges. Optical control of these systems using techniques developed in atomic physics has yet to exploit all the advantages of the solid state. Here we demonstrate voltage tunability of the spin energy-levels in a single quantum dot by modifying how spins sense magnetic field. We find that the in-plane g-factor varies discontinuously for electrons, as more holes are loaded onto the dot. In contrast, the in-plane hole g-factor varies continuously. The device can change the sign of the in-plane g-factor of a single hole, at which point an avoided crossing is observed in the two spin eigenstates. This is exactly what is required for universal control of a single spin with a single electrical gate.

16.
Opt Express ; 20(27): 28614-24, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23263099

RESUMO

We report on the design and experimental demonstration of a system based on an L3 cavity coupled to a photonic crystal waveguide for in-plane single-photon emission. A theoretical and experimental investigation for all the cavity modes within the photonic bandgap is presented for stand-alone L3 cavity structures. We provide a detailed discussion supported by finite-difference time-domain calculations of the evanescent coupling of an L3 cavity to a photonic crystal waveguide for on-chip single-photon transmission. Such a system is demonstrated experimentally by the in-plane transmission of quantum light from an InAs quantum dot coupled to the L3 cavity mode.


Assuntos
Iluminação/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Fótons
17.
Personal Disord ; 2(4): 279-92, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22200006

RESUMO

The need for an empirically validated, dimensional system of personality disorders is becoming increasingly apparent. While a number of systems have been investigated in this regard, the five-factor model of personality has demonstrated the ability to adequately capture personality pathology. In particular, the personality disorder prototypes developed by Lynam and Widiger (2001) have been tested in a number of samples. The goal of the present study is to extend this literature by validating the prototypes in a large, representative community sample of later middle-aged adults using both self and informant reports. We found that the prototypes largely work well in this age group. Schizoid, Borderline, Histrionic, Narcissistic, and Avoidant personality disorders demonstrate good convergent validity, with a particularly strong pattern of discriminant validity for the latter four. Informant-reported prototypes show similar patterns to self reports for all analyses. This demonstrates that informants are not succumbing to halo representations of the participants, but are rather describing participants in nuanced ways. It is important that informant reports add significant predictive validity for Schizoid, Antisocial, Borderline, Histrionic, and Narcissistic personality disorders. Implications of our results and directions for future research are discussed.


Assuntos
Manual Diagnóstico e Estatístico de Transtornos Mentais , Modelos Psicológicos , Transtornos da Personalidade/diagnóstico , Inventário de Personalidade/estatística & dados numéricos , Personalidade/classificação , Métodos Epidemiológicos , Família , Feminino , Amigos , Humanos , Entrevista Psicológica , Masculino , Pessoa de Meia-Idade , Transtornos da Personalidade/classificação , Transtornos da Personalidade/epidemiologia , Inventário de Personalidade/normas , População Urbana/estatística & dados numéricos
18.
Nanotechnology ; 22(6): 065302, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21212488

RESUMO

We report photoluminescence measurements on a single layer of site-controlled InAs quantum dots (QDs) grown by molecular beam epitaxy (MBE) on pre-patterned GaAs(100) substrates with a 15 nm re-growth buffer separating the dots from the re-growth interface. A process for cleaning the re-growth interface allows us to measure single dot emission linewidths of 80 µeV under non-resonant optical excitation, similar to that observed for self-assembled QDs. The dots reveal excitonic transitions confirmed by power dependence and fine structure splitting measurements. The emission wavelengths are stable, which indicates the absence of a fluctuating charge background in the sample and confirms the cleanliness of the re-growth interface.

19.
Nanotechnology ; 21(27): 274011, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20571198

RESUMO

Quantum interference lies at the foundation of many protocols for scalable quantum computing and communication with linear optics. To observe these effects the light source must emit photons that are indistinguishable. From a technological standpoint, it would be beneficial to have electrical control over the emission. Here we report of an electrically driven single-photon source emitting indistinguishable photons. The device consists of a layer of InAs quantum dots embedded in the intrinsic region of a p-i-n diode. Indistinguishability of consecutive photons is tested in a two-photon interference experiment under two modes of operation, continuous and pulsed current injection. We also present a complete theory based on the interference of photons with a Lorentzian spectrum which we compare to both our continuous wave and pulsed experiments. In the former case, a visibility was measured limited only by the timing resolution of our detection system. In the case of pulsed injection, we employ a two-pulse voltage sequence which suppresses multi-photon emission and allows us to carry out temporal filtering of photons which have undergone dephasing. The characteristic Hong-Ou-Mandel 'dip' is measured, resulting in a visibility of 64 +/- 4%.

20.
Phys Rev Lett ; 101(17): 170501, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18999730

RESUMO

We investigate the evolution of quantum correlations over the lifetime of a multiphoton state. Measurements reveal time-dependent oscillations of the entanglement fidelity for photon pairs created by a single semiconductor quantum dot. The oscillations are attributed to the phase acquired in the intermediate, nondegenerate, exciton-photon state and are consistent with simulations. We conclude that emission of photon pairs by a typical quantum dot with finite polarization splitting is in fact entangled in a time-evolving state, and not classically correlated as previously regarded.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...