Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 122(8): 1069-1083, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29475983

RESUMO

RATIONALE: Multilineage-differentiating stress enduring (Muse) cells, pluripotent marker stage-specific embryonic antigen-3+ cells, are nontumorigenic endogenous pluripotent-like stem cells obtainable from various tissues including the bone marrow. Their therapeutic efficiency has not been validated in acute myocardial infarction. OBJECTIVE: The main objective of this study is to clarify the efficiency of intravenously infused rabbit autograft, allograft, and xenograft (human) bone marrow-Muse cells in a rabbit acute myocardial infarction model and their mechanisms of tissue repair. METHODS AND RESULTS: In vivo dynamics of Nano-lantern-labeled Muse cells showed preferential homing of the cells to the postinfarct heart at 3 days and 2 weeks, with ≈14.5% of injected GFP (green fluorescent protein)-Muse cells estimated to be engrafted into the heart at 3 days. The migration and homing of the Muse cells was confirmed pharmacologically (S1PR2 [sphingosine monophosphate receptor 2]-specific antagonist JTE-013 coinjection) and genetically (S1PR2-siRNA [small interfering ribonucleic acid]-introduced Muse cells) to be mediated through the S1P (sphingosine monophosphate)-S1PR2 axis. They spontaneously differentiated into cells positive for cardiac markers, such as cardiac troponin-I, sarcomeric α-actinin, and connexin-43, and vascular markers. GCaMP3 (GFP-based Ca calmodulin probe)-labeled Muse cells that engrafted into the ischemic region exhibited increased GCaMP3 fluorescence during systole and decreased fluorescence during diastole. Infarct size was reduced by ≈52%, and the ejection fraction was increased by ≈38% compared with vehicle injection at 2 months, ≈2.5 and ≈2.1 times higher, respectively, than that induced by mesenchymal stem cells. These effects were partially attenuated by the administration of GATA4-gene-silenced Muse cells. Muse cell allografts and xenografts efficiently engrafted and recovered functions, and allografts remained in the tissue and sustained functional recovery for up to 6 months without immunosuppression. CONCLUSIONS: Muse cells may provide reparative effects and robust functional recovery and may, thus, provide a novel strategy for the treatment of acute myocardial infarction.


Assuntos
Lisofosfolipídeos/fisiologia , Infarto do Miocárdio/cirurgia , Células-Tronco Pluripotentes/transplante , Receptores de Lisoesfingolipídeo/fisiologia , Esfingosina/análogos & derivados , Aloenxertos , Animais , Autoenxertos , Diferenciação Celular , Movimento Celular/fisiologia , Fator de Transcrição GATA4/antagonistas & inibidores , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/fisiologia , Sobrevivência de Enxerto , Proteínas de Fluorescência Verde/análise , Xenoenxertos , Humanos , Luciferases/análise , Proteínas Luminescentes/análise , Masculino , Infarto do Miocárdio/patologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Coelhos , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/genética , Proteínas Recombinantes de Fusão/análise , Especificidade da Espécie , Esfingosina/fisiologia , Receptores de Esfingosina-1-Fosfato
2.
Laryngoscope ; 123(11): 2728-34, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23929597

RESUMO

OBJECTIVES/HYPOTHESIS: To investigate the functional efficiency of skeletal muscles regenerated by transplantation of bone marrow-derived stromal cells (BSCs) or induced-muscle progenitor cells (IMCs) as assessed in the canine posterior cricoarytenoid (PCA) muscle injury model. STUDY DESIGN: Prospective animal experiment with control. METHODS: We performed BSC/IMC transplantation into injured canine PCA muscles. We investigated the capability of auto- and allo-BSC/IMC transplantation using a gelatin sponge scaffold to promote functional regeneration of PCA muscles. Transplantation was assessed by fiberscopic analysis of vocal fold movement. We also examined the histologic changes of the transplanted regions. As a control, a gelatin sponge scaffold without additional cells was transplanted into the injured area. RESULTS: Auto-BSC/IMC transplantation effectively restored vocal fold movement, whereas scaffold alone or allo-BSC/IMC transplantation did not. Histologic examination revealed that (in cases of good recovery) muscle regeneration occurred in the area of cell transplantation, and scar formation without muscle regeneration was observed under control conditions. The dogs with autologous transplantation of BSC had faster functional recovery than did dogs treated with autologous transplantation of IMC. CONCLUSIONS: Functional efficiency was shown in skeletal muscles regenerated using BSCs and IMPs. Motor function recovery was observed using autologous transplantation of BSCs and IMCs. Minimal functional recovery was observed using allogeneic transplantation of these cells.


Assuntos
Músculos Laríngeos/fisiologia , Transplante de Células-Tronco Mesenquimais , Regeneração , Animais , Cães , Recuperação de Função Fisiológica
3.
Stem Cells Transl Med ; 2(7): 488-98, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23748608

RESUMO

Stem cells are generally collected using flow cytometry, but this method is not applicable when the cell surface marker is not well determined. Satellite cells, which are skeletal muscle stem cells, have the ability to regenerate damaged muscles and are expected to be applicable for treatment of muscle degeneration. Although the transcription factor Pax7 is a known specific marker of satellite cells, it is not located on the cell surface and therefore flow cytometry is not directly applicable. In the present study, we turned our attention to the stress tolerance of adult stem cells, and we propose long-term trypsin incubation (LTT) as a novel approach to collecting satellite cells from mouse and human skeletal muscles. LTT led to a remarkable increase in the ratio of Pax7(+) cells that retain normal myogenic stem cell function. In particular, human Pax7(+) cells made up approximately 30% of primary cultured cells, whereas after LTT, the ratio of Pax7(+) cells increased up to ∼80%, and the ratio of Pax7(+) and/or MyoD(+) myogenic cells increased to ∼95%. Once transplanted, LTT-treated cells contributed to subsequent muscle regeneration following repetitive muscle damage without additional cell transplantation. The stress tolerance of Pax7(+) cells is related to heat shock protein 27 and αB-crystallin, members of the small heat shock protein family. This approach, based on the stress resistance of adult stem cells, is a safe and inexpensive method of efficiently collecting human satellite cells and may also be used for collecting other tissue stem cells whose surface marker is unknown.


Assuntos
Separação Celular/métodos , Células Musculares/citologia , Células Satélites de Músculo Esquelético/citologia , Células-Tronco/citologia , Estresse Fisiológico/fisiologia , Idoso de 80 Anos ou mais , Animais , Feminino , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares , Células Musculares/metabolismo , Músculo Esquelético/citologia , Proteína MyoD/metabolismo , Fator de Transcrição PAX7/metabolismo , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/metabolismo , Células-Tronco/metabolismo , Tripsina/farmacologia , Cadeia B de alfa-Cristalina/metabolismo
4.
J Clin Invest ; 123(1): 272-84, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23202734

RESUMO

A cell-based therapy for the replacement of dopaminergic neurons has been a long-term goal in Parkinson's disease research. Here, we show that autologous engraftment of A9 dopaminergic neuron-like cells induced from mesenchymal stem cells (MSCs) leads to long-term survival of the cells and restoration of motor function in hemiparkinsonian macaques. Differentiated MSCs expressed markers of A9 dopaminergic neurons and released dopamine after depolarization in vitro. The differentiated autologous cells were engrafted in the affected portion of the striatum. Animals that received transplants showed modest and gradual improvements in motor behaviors. Positron emission tomography (PET) using [11C]-CFT, a ligand for the dopamine transporter (DAT), revealed a dramatic increase in DAT expression, with a subsequent exponential decline over a period of 7 months. Kinetic analysis of the PET findings revealed that DAT expression remained above baseline levels for over 7 months. Immunohistochemical evaluations at 9 months consistently demonstrated the existence of cells positive for DAT and other A9 dopaminergic neuron markers in the engrafted striatum. These data suggest that transplantation of differentiated autologous MSCs may represent a safe and effective cell therapy for Parkinson's disease.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/transplante , Células-Tronco Mesenquimais/metabolismo , Transtornos Parkinsonianos/terapia , Animais , Antígenos de Diferenciação/biossíntese , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/citologia , Regulação da Expressão Gênica , Integrina alfa6beta4/biossíntese , Macaca fascicularis , Masculino , Células-Tronco Mesenquimais/citologia , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/metabolismo , Tomografia por Emissão de Pósitrons , Radiografia , Transplante Autólogo
5.
Cells ; 1(4): 1045-60, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24710542

RESUMO

Mesenchymal stem cells (MSCs) are easily accessible and safe for regenerative medicine. MSCs exert trophic, immunomodulatory, anti-apoptotic, and tissue regeneration effects in a variety of tissues and organs, but their entity remains an enigma. Because MSCs are generally harvested from mesenchymal tissues, such as bone marrow, adipose tissue, or umbilical cord as adherent cells, MSCs comprise crude cell populations and are heterogeneous. The specific cells responsible for each effect have not been clarified. The most interesting property of MSCs is that, despite being adult stem cells that belong to the mesenchymal tissue lineage, they are able to differentiate into a broad spectrum of cells beyond the boundary of mesodermal lineage cells into ectodermal or endodermal lineages, and repair tissues. The broad spectrum of differentiation ability and tissue-repairing effects of MSCs might be mediated in part by the presence of a novel pluripotent stem cell type recently found in adult human mesenchymal tissues, termed multilineage-differentiating stress enduring (Muse) cells. Here we review recently updated studies of the regenerative effects of MSCs and discuss their potential in regenerative medicine.

6.
Proc Natl Acad Sci U S A ; 108(24): 9875-80, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21628574

RESUMO

The stochastic and elite models have been proposed for the mechanism of induced pluripotent stem (iPS) cell generation. In this study we report a system that supports the elite model. We previously identified multilineage-differentiating stress-enduring (Muse) cells in human dermal fibroblasts that are characterized by stress tolerance, expression of pluripotency markers, self-renewal, and the ability to differentiate into endodermal-, mesodermal-, and ectodermal-lineage cells from a single cell. They can be isolated as stage-specific embryonic antigen-3/CD105 double-positive cells. When human fibroblasts were separated into Muse and non-Muse cells and transduced with Oct3/4, Sox2, Klf4, and c-Myc, iPS cells were generated exclusively from Muse cells but not from non-Muse cells. Although some colonies were formed from non-Muse cells, they were unlike iPS cells. Furthermore, epigenetic alterations were not seen, and some of the major pluripotency markers were not expressed for the entire period during iPS cell generation. These findings were confirmed further using cells transduced with a single polycistronic virus vector encoding all four factors. The results demonstrate that in adult human fibroblasts a subset of preexisting adult stem cells whose properties are similar in some respects to those of iPS cells selectively become iPS cells, but the remaining cells make no contribution to the generation of iPS cells. Therefore this system seems to fit the elite model rather than the stochastic model.


Assuntos
Diferenciação Celular , Linhagem da Célula , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Adaptação Fisiológica , Adulto , Animais , Antígenos CD/metabolismo , Antígenos de Superfície/metabolismo , Antígenos Glicosídicos Associados a Tumores/metabolismo , Linhagem Celular , Células Cultivadas , Derme/citologia , Endoglina , Fibroblastos/metabolismo , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores de Superfície Celular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Antígenos Embrionários Estágio-Específicos/metabolismo , Estresse Fisiológico , Transfecção
7.
Proc Natl Acad Sci U S A ; 107(19): 8639-43, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20421459

RESUMO

We found adult human stem cells that can generate, from a single cell, cells with the characteristics of the three germ layers. The cells are stress-tolerant and can be isolated from cultured skin fibroblasts or bone marrow stromal cells, or directly from bone marrow aspirates. These cells can self-renew; form characteristic cell clusters in suspension culture that express a set of genes associated with pluripotency; and can differentiate into endodermal, ectodermal, and mesodermal cells both in vitro and in vivo. When transplanted into immunodeficient mice by local or i.v. injection, the cells integrated into damaged skin, muscle, or liver and differentiated into cytokeratin 14-, dystrophin-, or albumin-positive cells in the respective tissues. Furthermore, they can be efficiently isolated as SSEA-3(+) cells. Unlike authentic ES cells, their proliferation activity is not very high and they do not form teratomas in immunodeficient mouse testes. Thus, nontumorigenic stem cells with the ability to generate the multiple cell types of the three germ layers can be obtained through easily accessible adult human mesenchymal cells without introducing exogenous genes. These unique cells will be beneficial for cell-based therapy and biomedical research.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Adulto , Animais , Células da Medula Óssea/citologia , Agregação Celular , Diferenciação Celular , Proliferação de Células , Humanos , Transplante de Células-Tronco Mesenquimais , Camundongos
8.
J Biol Chem ; 284(26): 17465-74, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19380577

RESUMO

The RIG-I like receptor (RLR) comprises three homologues: RIG-I (retinoic acid-inducible gene I), MDA5 (melanoma differentiation-associated gene 5), and LGP2 (laboratory of genetics and physiology 2). Each RLR senses different viral infections by recognizing replicating viral RNA in the cytoplasm. The RLR contains a conserved C-terminal domain (CTD), which is responsible for the binding specificity to the viral RNAs, including double-stranded RNA (dsRNA) and 5'-triphosphated single-stranded RNA (5'ppp-ssRNA). Here, the solution structures of the MDA5 and LGP2 CTD domains were solved by NMR and compared with those of RIG-I CTD. The CTD domains each have a similar fold and a similar basic surface but there is the distinct structural feature of a RNA binding loop; The LGP2 and RIG-I CTD domains have a large basic surface, one bank of which is formed by the RNA binding loop. MDA5 also has a large basic surface that is extensively flat due to open conformation of the RNA binding loop. The NMR chemical shift perturbation study showed that dsRNA and 5'ppp-ssRNA are bound to the basic surface of LGP2 CTD, whereas dsRNA is bound to the basic surface of MDA5 CTD but much more weakly, indicating that the conformation of the RNA binding loop is responsible for the sensitivity to dsRNA and 5'ppp-ssRNA. Mutation study of the basic surface and the RNA binding loop supports the conclusion from the structure studies. Thus, the CTD is responsible for the binding affinity to the viral RNAs.


Assuntos
Citosol/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases/química , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Dimerização , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Helicase IFIH1 Induzida por Interferon , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Fenilalanina/química , Fenilalanina/genética , Fenilalanina/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA Helicases/genética , RNA Helicases/metabolismo , Receptores Imunológicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Soluções , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
9.
J Biol Chem ; 284(20): 13348-13354, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19324880

RESUMO

Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are essential for detecting viral RNA and triggering antiviral responses, including production of type I interferon. We analyzed the phenotype of non-synonymous mutants of human RIG-I and MDA5 reported in databases by functional complementation in cell cultures. Of seven missense mutations of RIG-I, S183I, which occurs within the second caspase recruitment domain repeat, inactivated this domain and conferred a dominant inhibitory function. Of 10 mutants of MDA5, two exhibited loss of function. A nonsense mutation, E627*, resulted in deletion of the C-terminal region and double-stranded RNA (dsRNA) binding activity. Another loss of function mutation, I923V, which occurs within the C-terminal domain, did not affect dsRNA binding activity, suggesting a novel and essential role for this residue in the signaling. Remarkably, these mutations are implicated in resistance to type I diabetes. However, the A946T mutation of MDA5, which has been implicated in type I diabetes by previous genetic analyses, affected neither dsRNA binding nor IFN gene activation. These results provide new insights into the structure-function relationship of RIG-I-like receptors as well as into human RIG-I-like receptor polymorphisms, antiviral innate immunity, and autoimmune diseases.


Assuntos
Códon sem Sentido , RNA Helicases DEAD-box/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Mutação de Sentido Incorreto , Receptores do Ácido Retinoico/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , Diabetes Mellitus Tipo 1/genética , Humanos , Imunidade Inata/genética , Helicase IFIH1 Induzida por Interferon , Camundongos , Estrutura Terciária de Proteína/fisiologia , Receptores do Ácido Retinoico/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...