Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(19): 7342-7358, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38756793

RESUMO

The overall performance of lithium batteries remains unmatched to this date. Decades of optimisation have resulted in long-lasting batteries with high energy density suitable for mobile applications. However, the electrolytes used at present suffer from low lithium transference numbers, which induces concentration polarisation and reduces efficiency of charging and discharging. Here we show how targeted modifications can be used to systematically evolve anion structural motifs which can yield electrolytes with high transference numbers. Using a multidisciplinary combination of theoretical and experimental approaches, we screened a large number of anions. Thus, we identified anions which reach lithium transference numbers around 0.9, surpassing conventional electrolytes. Specifically, we find that nitrile groups have a coordination tendency similar to SO2 and are capable of inducing the formation of Li+ rich clusters. In the bigger picture, we identified a balanced anion/solvent coordination tendency as one of the key design parameters.

2.
J Phys Chem B ; 127(48): 10422-10433, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38015036

RESUMO

Single-ion conducting liquid electrolytes are key to achieving rapid charge/discharge in Li secondary batteries. The Li+ transference (or transport) numbers are the defining properties of such electrolytes and have been discussed in the framework of concentrated solution theories. However, the connection between macroscopic transference and microscopic ion dynamics remains unclear. Molecular dynamics simulations were performed to obtain direct information regarding the microscopic behaviors in highly concentrated electrolytes, and the relationships between these behaviors and the transference number were determined under anion-blocking conditions. Various solvents with different donor numbers (DNs) were used along with a Li salt of the weakly Lewis basic bis(fluorosulfonyl)amide anion for electrolyte preparation. Favorable ordered Li+ structuring and a continuous Li+ conduction pathway were observed for the fluoroethylene carbonate-based electrolyte due to its low DN. The properties were less pronounced at higher DNs, e.g., for the dimethyl sulfoxide-based electrolyte. The τLi-solventlife/τdipolerelax ratio was introduced as a factor for ion dynamics, and the two mechanisms of ion transport were considered an exchange mechanism (τLi-solventlife/τdipolerelax < 1) and a vehicle mechanism (translational motion of solvated Li+) (τLi-solventlife/τdipolerelax ≥ 1). Vehicle-type transport was dominant with high DNs, while exchangeable transport was preferable at lower DNs. These findings should aid the further selection of solvents and Li salts to prepare single-ion conducting electrolytes.

3.
J Phys Chem B ; 127(28): 6333-6341, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37428625

RESUMO

The parameters of the polarizable force field used for molecular dynamics simulations of Li diffusion in high-concentration lithium bis(trifluoromethanesulfonyl)amide (Li[TFSA]) sulfone (sulfolane, dimethylsulfone, ethylmethylsulfone, and ethyl-i-propylsulfone) solutions were refined. The densities of the solutions obtained by molecular dynamics simulations reproduced well the experimental values. The calculated concentration, temperature, and solvent dependencies of self-diffusion coefficients of ions and solvents in the mixtures well reproduce the experimentally observed dependencies. Ab initio calculations show that the intermolecular interactions between Li ions and four sulfones are not largely different. Conformational analyses show that sulfolane can change the conformation more easily owing to lower barrier height for pseudorotation compared to the rotational barrier heights of diethylsulfone and ethylmethylsulfone. Molecular dynamics simulations indicate that the easy conformation change of solvent affects the rotational relaxation of the solvent and the diffusion of Li ion in the mixture. The easy conformation change of sulfolane is one of the causes of faster diffusion of Li ion in the mixture of Li[TFSA] and sulfolane compared to the mixtures of smaller dimethylsulfone and ethylmethylsulfone.

4.
Phys Chem Chem Phys ; 25(9): 6970-6978, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36804678

RESUMO

Electrolytes that transport only Li ions play a crucial role in improving rapid charge and discharge properties in Li secondary batteries. Single Li-ion conduction can be achieved via liquid materials such as Li ionic liquids containing Li+ as the only cations because solvent-free fused Li salts do not polarise in electrochemical cells, owing to the absence of neutral solvents that allow polarisation in the salt concentration and the inevitably homogeneous density in the cells under anion-blocking conditions. However, we found that borate-based Li ionic liquids induce concentration polarisation in a Li/Li symmetric cell, which results in their transference (transport) numbers under anion-blocking conditions (tabcLi) being well below unity. The electrochemical polarisation of the borate-based Li ionic liquids was attributed to an equilibrium shift caused by exchangeable B-O coordination bonds in the anions to generate Li salts and borate-ester solvents at the electrode/electrolyte interface. By comparing borate-based Li ionic liquids containing different ligands, the B-O bond strength and extent of ligand exchange were found to be directly linked to the tabcLi values. This study confirms that the presence of dynamic exchangeable bonds causes electrochemical polarisation and provides a reference for the rational molecular design of Li ionic liquids aimed at achieving single-ion conducting liquid electrolytes.

5.
Chem Rec ; 23(8): e202200301, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36802142

RESUMO

Highly concentrated electrolytes (HCEs) have a similarity to ionic liquids (ILs) in high ionic nature, and indeed some of HECs are found to behave like an IL. HCEs have attracted considerable attention as prospective candidates for electrolyte materials in future lithium secondary batteries owing to their favorable properties both in the bulk and at the electrochemical interface. In this study, we highlight the effects of the solvent, counter anion, and diluent of HCEs on the Li+ ion coordination structure and transport properties (e. g., ionic conductivity and apparent Li+ ion transference number measured under anion-blocking conditions, t L i a b c ${{t}_{{\rm L}{\rm i}}^{{\rm a}{\rm b}{\rm c}}}$ ). Our studies on dynamic ion correlations unveiled the difference in the ion conduction mechanisms in HCEs and their intimate relevance to t L i a b c ${{t}_{{\rm L}{\rm i}}^{{\rm a}{\rm b}{\rm c}}}$ values. Our systematic analysis of the transport properties of HCEs also suggests the need for a compromise to simultaneously achieve high ionic conductivity and high t L i a b c ${{t}_{{\rm L}{\rm i}}^{{\rm a}{\rm b}{\rm c}}}$ values.

6.
Phys Chem Chem Phys ; 24(23): 14269-14276, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35667383

RESUMO

Highly concentrated electrolytes (HCEs) have attracted significant interest as promising liquid electrolytes for next-generation Li secondary batteries, owing to various beneficial properties both in the bulk and at the electrode/electrolyte interface. One particular class of HCEs consists of binary mixtures of lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) and oligoethers that behave like ionic liquids. [Li(G4)][TFSA], which comprises an equimolar mixture of LiTFSA and tetraglyme (G4), is an example. In our previous works, the addition of low-polarity molecular solvents to [Li(G4)][TFSA] was found to effectively enhance the conductivity while retaining the unique Li-ion solvation structure. However, it remains unclear how the diluents affect another key electrolyte parameter-the Li+ transference number-despite its critical importance for achieving the fast charging/discharging of Li secondary batteries. Thus, in this study, the effects of diluents on the extremely low Li+ transference number under anion-blocking conditions in [Li(G4)][TFSA] were elucidated, with a special focus on the polarity of the additional solvents. The concentration dependence of the dynamic ion correlations was further studied in the framework of the concentrated electrolyte theory. The results revealed that a non-coordinating diluent is not involved in the modification of the ion transport mechanism, and therefore the low Li+ transference number is inherited by the diluted electrolytes. In contrast, a coordinating diluent effectively reduces the anti-correlated ion motions of [Li(G4)][TFSA], thereby improving the Li+ transference number. This is the first time that the significant effects of the coordination properties of the diluting solvents on the dynamic ion correlations and Li+ transference numbers have been reported for diluted solvate ionic liquids.

7.
Phys Chem Chem Phys ; 23(38): 21419-21436, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34550122

RESUMO

Polar solvents dissolve Li and Na salts at high concentrations and are used as electrolyte solutions for batteries. The solvents interact strongly with the alkali metal cations to form complexes in the solution. The activity (concentration) of the uncoordinated solvent decreases as the salt concentration is increased. At extremely high salt concentrations, all the solvent molecules are involved in the coordination of the ions and form the solvates of the salts. In this article, we review the structures, transport properties, and electrochemistry of Li/Na salt solvates. In molten solvates, the activity of the uncoordinated solvent is negligible; this is the main origin of their peculiar characteristics, such as high thermal stability, wide electrochemical window, and unique ion transport. In addition, the solvent activity greatly influences the electrochemical reactions in Li/Na batteries. We highlight the attractive features of molten solvates as promising electrolytes for next-generation batteries.

8.
Macromol Rapid Commun ; 42(10): e2100091, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33851443

RESUMO

Using atomic force microscopy, the photo-induced reversible changes in a block copolymer self-assembly containing an azobenzene ionic liquid, which undergoes sol-gel transition is directly observed. This is the first report on the sol-gel transition of an ABA-type block copolymer consisting of upper critical solution temperature (UCST)-type A blocks in a photoresponsive ionic liquid mixture. The sol-gel transition is accompanied by an order-to-disorder structural change, which subsequently induces a change in the ionic conductivity. Surprisingly, the photo-induced ionic conductivity and rheological changes occurs rapidly (≈30 s) despite the dense (≈80 wt%) polymeric system. The rapid structural change is probably attributable to the fast diffusion of the ionic liquid.


Assuntos
Líquidos Iônicos , Compostos Azo , Géis , Polímeros
9.
Phys Chem Chem Phys ; 23(4): 2622-2629, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33475115

RESUMO

To achieve single-ion conducting liquid electrolytes for the rapid charge and discharge of Li secondary batteries, improvement in the Li+ transference number of the electrolytes is integral. Few studies have established a feasible design for achieving Li+ transference numbers approaching unity in liquid electrolytes consisting of low-molecular-weight salts and solvents. Previously, we studied the effects of Li+-solvent interactions on the Li+ transference number in glyme- and sulfolane-based molten Li salt solvates and clarified the relationship between this transference number and correlated ion motions. In this study, to deepen our insight into the design principles of single-ion conducting liquid electrolytes, we focused on the effects of Li+-anion interactions on Li ion transport in glyme-Li salt equimolar mixtures with different counter anions. Interestingly, the equimolar triglyme (G3)-lithium trifluoroacetate (Li[TFA]) mixture ([Li(G3)][TFA]) demonstrated a high Li+ transference number, estimated via the potentiostatic polarization method (tPPLi = 0.90). Dynamic ion correlation studies suggested that the high tPPLi could be mainly ascribed to the strongly coupled Li+-anion motions in the electrolytes. Furthermore, high-energy X-ray total scattering measurements combined with all-atom molecular dynamics simulations showed that Li+ ions and [TFA] anions aggregated into ionic clusters with a relatively long-range ion-ordered structure. Therefore, the collective motions of the Li ions and anions in the form of highly aggregated ion clusters, which likely diminish rather than enhance ionic conductivity, play a significant role in achieving high tPPLi in liquid electrolytes. Based on the dynamic ion correlations, a potential design approach is discussed to accomplish single-ion conducting liquid electrolytes with high ionic conductivity.

10.
Phys Chem Chem Phys ; 22(27): 15214-15221, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32598420

RESUMO

The Li+ transference number of electrolytes is one of the key factors contributing to the enhancement in the charge-discharge performance of Li secondary batteries. However, a design principle to achieve a high Li+ transference number has not been established for liquid electrolytes. To understand the factors governing the Li+ transference number tLi, we investigated the influence of the ion-solvent interactions, Li ion coordination, and correlations of ion motions on the Li+ transference number in glyme (Gn, n = 1-4)- and sulfolane (SL)-based molten Li salt solvate electrolytes with lithium bis(trifluoromethansulfonyl)amide (LiTFSA). For the 1 : 1 tetraglyme-LiTFSA molten complex, [Li(G4)][TFSA], the Li+ transference number estimated using the potentiostatic polarisation method (t = 0.028) was considerably lower than that estimated using the self-diffusion coefficient data with pulsed filed gradient (PFG)-NMR (t = 0.52). The dynamic ion correlations (i.e., cation-cation, anion-anion, and cation-anion cross-correlations) were determined from the experimental data on the basis of Roling and Bedrov's concentrated solution theory, and the results suggest that the strongly negative cross-correlations of the ion motions (especially for cation-cation motions) are responsible for the extremely low t of [Li(G4)][TFSA]. In contrast, t is larger than t in the SL-based electrolytes. The high t of the SL-based electrolytes was ascribed to the substantially weaker anti-correlations of cation-cation and cation-anion motions. Whereas the translational motions of the long-lived [Li(glyme)]+ and [TFSA]- dominate the ionic conduction for [Li(G4)][TFSA], Li ion hopping/exchange conduction was reported to be prevalent in the SL-based electrolytes. The unique Li ion conduction mechanism is considered to contribute to the less correlated cation-cation and cation-anion motions in SL-based electrolytes.

11.
J Phys Chem B ; 124(23): 4774-4780, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32412758

RESUMO

Deviations from the Nernst-Einstein relation are commonly attributed to ion-ion correlation and ion pairing. Despite the fact that these deviations can be quantified by either experimental measurements or molecular dynamics simulations, there is no rule of thumb to tell the extent of deviations. Here, we show that deviations from the Nernst-Einstein relation are proportional to the inverse viscosity by exploring the finite-size effect on transport properties under periodic boundary conditions. This conclusion is in accord with the established experimental results of ionic liquids.

12.
RSC Adv ; 9(39): 22668-22675, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35519483

RESUMO

Room-temperature-fused Li salt solvates that exhibit ionic liquid-like behaviour can be formed using particular combinations of multidentate glymes and lithium salts bearing weakly coordinating anions, and are now deemed a subset of ionic liquids, viz. solvate ionic liquids (SILs). Herein, we report redox-active glyme-Li salt molten solvates consisting of tetraethyleneglycol ethylmethyl ether (G4Et) and lithium iodide/triiodide, [Li(G4Et)]I and [Li(G4Et)]I3. The coordination structure of the complex ions and the thermal, transport, and electrochemical properties of these molten Li salt solvates were investigated to diagnose whether they can be categorized as SILs. [Li(G4Et)]+ and I3 - were found to remain stable as discrete ions and exist as well-dissociated forms in the liquid state, indicating that [Li(G4Et)]I3 can be classified as a good SIL. This study also clarified that the I- and I3 - counter anions exhibit an electrochemical redox reaction in the highly concentrated molten Li salt solvates. The redox-active molten Li solvates were further studied as a highly concentrated catholyte for use in rechargeable semi-liquid lithium batteries. Although the cell constructed using [Li(G4Et)]I3 failed to charge after the initial discharge step, the cell containing [Li(G4Et)]I demonstrates reversible charge-discharge behaviour with a high volumetric energy density of 180 W h L-1 based on the catholyte volume.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...