Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359453

RESUMO

Cone-beam Computed Tomography (CBCT) is widely used in dental imaging, small animal imaging, radiotherapy, and non-destructive industrial inspection. The quality of CBCT images depends on the precise knowledge of the CBCT system's alignment. We introduce a distinct procedure, "precision alignment loop (PAL)", to calibrate any CBCT system with a circular trajectory. We describe the calibration procedure by using a line-beads phantom, and how PAL determines the misalignments from a CBCT system. PAL also yields the uncertainties in the simulated calibration to give an estimate of the errors in the misalignments. From the analytical simulations, PAL can precisely obtain the source-to-rotation axis distance (SRD), and the geometric center G, "the point in z-axis meets the detector", where the z-axis is coincident with the line from the X-ray source that intersects the axis of the rotation (AOR) orthogonally. The uncertainties of three misalignment angles of the detector are within ±0.05°, which is close to ±0.04° for the results of Yang et al. [18], but our method is easy and simple to implement. Our distinct procedure, on the other hand, yields the calibration of a micro-CT system and an example of reconstructed images, showing our calibration method for the CBCT system to be simple, precise, and accurate.

2.
Phys Med Biol ; 63(15): 155011, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29938686

RESUMO

Given that the computed tomography (CT) reconstruction algorithm based on compressed sensing (CS) results in blurred edges, we propose a modified Canny operator that assists the CS algorithm to accurately capture an object's edge, to preserve and further enhance the contrasts in the reconstructed image, thereby improving image quality. We modified two procedures of the traditional Canny operator, namely non-maximum suppression and edge tracking by hysteresis according to the characteristics of low-dose CT reconstruction, and proposed two major modifications: double-response edge detection and directional edge tracking. The newly modified Canny operator was combined with the CS reconstruction algorithm to become an edge-enhanced CS (EECS). Both a 2D Shepp-Logan phantom and a 3D dental phantom were used to conduct reconstruction testing. Root-mean-square error, peak signal-to-noise ratio, and universal quality index were employed to verify the reconstruction results. Qualitative and quantitative results of EECS reconstruction showed its superiority over conventional CS or CS combined with different edge detection techniques, such as Laplacian, Prewitt, Sobel operators, etc. The experiments verified that the proposed modified Canny operator is able to effectively detect the edge location of an object during low-dose reconstruction, enabling EECS to reconstruct images with better quality than those produced by other algorithms.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...