Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38585986

RESUMO

Gap junctions formed by the major neuronal connexin Cx36 function as electrical synapses in the nervous system and provide unique functions such as synchronizing activities or network oscillations. Although the physiological significance of electrical synapses for neuronal networks is well established, little is known about the pathways that regulate the transport of its main component: Cx36. Here we have used HEK293T cells as an expression system in combination with siRNA and BioID screens to study the transition of Cx36 from the ER to the cis Golgi. Our data indicate that the C-terminal tip of Cx36 is a key factor in this process, mediating binding interactions with two distinct components in the early secretory pathway: the COPII complex and the Golgi stacking protein Grasp55. The C-terminal amino acid valine serves as an ER export signal to recruit COPII cargo receptors Sec24A/B/C at ER exit sites, whereas the PDZ binding motif "SAYV" mediates an interaction with Grasp55. These two interactions have opposing effects in their respective compartments. While Sec24 subunits carry Cx36 out of the ER, Grasp55 stabilizes Cx36 in the Golgi as shown in over expression experiments. These early regulatory steps of Cx36 are expected to be essential for the formation, function, regulation and plasticity of electrical synapses in the developing and mature nervous system.

2.
Cell Mol Life Sci ; 80(12): 362, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37979052

RESUMO

A hallmark of inherited retinal degenerative diseases such as retinitis pigmentosa (RP) is progressive structural and functional remodeling of the remaining retinal cells as photoreceptors degenerate. Extensive remodeling of the retina stands as a barrier for the successful implementation of strategies to restore vision. To understand the molecular basis of remodeling, we performed analyses of single-cell transcriptome data from adult zebrafish retina of wild type AB strain (WT) and a P23H mutant rhodopsin transgenic model of RP with continuous degeneration and regeneration. Retinas from both female and male fish were pooled to generate each library, combining data from both sexes. We provide a benchmark atlas of retinal cell type transcriptomes in zebrafish and insight into how each retinal cell type is affected in the P23H model. Oxidative stress is found throughout the retina, with increases in reliance on oxidative metabolism and glycolysis in the affected rods as well as cones, bipolar cells, and retinal ganglion cells. There is also transcriptional evidence for widespread synaptic remodeling and enhancement of glutamatergic transmission in the inner retina. Notably, changes in circadian rhythm regulation are detected in cones, bipolar cells, and retinal pigmented epithelium. We also identify the transcriptomic signatures of retinal progenitor cells and newly formed rods essential for the regenerative process. This comprehensive transcriptomic analysis provides a molecular road map to understand how the retina remodels in the context of chronic retinal degeneration with ongoing regeneration.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Animais , Masculino , Feminino , Peixe-Zebra/genética , Retina/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Degeneração Retiniana/metabolismo , Modelos Animais de Doenças
3.
J Biol Chem ; 299(11): 105282, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742923

RESUMO

The intracellular domains of connexins are essential for the assembly of gap junctions. For connexin 36 (Cx36), the major neuronal connexin, it has been shown that a dysfunctional PDZ-binding motif interferes with electrical synapse formation. However, it is still unknown how this motif coordinates the transport of Cx36. In the present study, we characterize a phenotype of Cx36 mutants that lack a functional PDZ-binding motif using HEK293T cells as an expression system. We provide evidence that an intact PDZ-binding motif is critical for proper endoplasmic reticulum (ER) export of Cx36. Removing the PDZ-binding motif of Cx36 results in ER retention and the formation of multimembrane vesicles containing gap junction-like connexin aggregates. Using a combination of site-directed mutagenesis and electron micrographs, we reveal that these vesicles consist of Cx36 channels that docked prematurely in the ER. Our data suggest a model in which ER-retained Cx36 channels reshape the ER membrane into concentric whorls that are released into the cytoplasm.


Assuntos
Conexinas , Retículo Endoplasmático , Junções Comunicantes , Humanos , Conexinas/genética , Conexinas/metabolismo , Retículo Endoplasmático/metabolismo , Junções Comunicantes/metabolismo , Células HEK293 , Domínios Proteicos , Motivos de Aminoácidos , Sinapses Elétricas/fisiologia , Mutação , Transporte Proteico/genética , Vesículas Sinápticas/patologia , Vesículas Sinápticas/ultraestrutura , Microscopia Eletrônica de Varredura , Proteína delta-2 de Junções Comunicantes
4.
Front Cell Neurosci ; 17: 1214084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37519633

RESUMO

Introduction: Understanding how photoreceptor genes are regulated is important for investigating retinal development and disease. While much is known about gene regulation in cones, the mechanism by which tandemly-replicated opsins, such as human long wavelength-sensitive and middle wavelength-sensitive opsins, are differentially regulated remains elusive. In this study, we aimed to further our understanding of transcriptional heterogeneity in cones that express tandemly-replicated opsins and the regulation of such differential expression using zebrafish, which express the tandemly-replicated opsins lws1 and lws2. Methods: We performed bulk and single cell RNA-Seq of LWS1 and LWS2 cones, evaluated expression patterns of selected genes of interest using multiplex fluorescence in situ hybridization, and used exogenous thyroid hormone (TH) treatments to test selected genes for potential control by thyroid hormone: a potent, endogenous regulator of lws1 and lws2 expression. Results: Our studies indicate that additional transcriptional differences beyond opsin expression exist between LWS1 and LWS2 cones. Bulk RNA-Seq results showed 95 transcripts enriched in LWS1 cones and 186 transcripts enriched in LWS2 cones (FC > 2, FDR < 0.05). In situ hybridization results also reveal underlying heterogeneity within the lws1- and lws2-expressing populations. This heterogeneity is evident in cones of mature zebrafish, and further heterogeneity is revealed in transcriptional responses to TH treatments. Discussion: We found some evidence of coordinate regulation of lws opsins and other genes by exogenous TH in LWS1 vs. LWS2 cones, as well as evidence of gene regulation not mediated by TH. The transcriptional differences between LWS1 and LWS2 cones are likely controlled by multiple signals, including TH.

5.
Front Cell Neurosci ; 17: 1321337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38322239

RESUMO

High throughput sequencing has generated an enormous amount of information about the genes expressed in various cell types and tissues throughout the body, and about how gene expression changes over time and in diseased conditions. This knowledge has made targeted gene knockdowns an important tool in screening and identifying the roles of genes that are differentially expressed among specific cells of interest. While many approaches are available and optimized in mammalian models, there are still several limitations in the zebrafish model. In this article, we describe two approaches to target specific genes in the retina for knockdown: cell-penetrating, translation-blocking Vivo-Morpholino oligonucleotides and commercially available lipid nanoparticle reagents to deliver siRNA. We targeted expression of the PCNA gene in the retina of a P23H rhodopsin transgenic zebrafish model, in which rapidly proliferating progenitor cells replace degenerated rod photoreceptors. Retinas collected 48 h after intravitreal injections in adult zebrafish reveal that both Vivo-Morpholinos and lipid encapsulated siRNAs were able to successfully knock down expression of PCNA. However, only retinas injected with Vivo-Morpholinos showed a significant decrease in the formation of P23H rhodopsin-expressing rods, a downstream effect of PCNA inhibition. Surprisingly, Vivo-Morpholinos were able to exit the injected eye and enter the contralateral non-injected eye to inhibit PCNA expression. In this article we describe the techniques, concentrations, and considerations we found necessary to successfully target and inhibit genes through Vivo-Morpholinos and lipid encapsulated siRNAs.

6.
Front Cell Neurosci ; 15: 667046, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393723

RESUMO

Synaptic signaling complexes are held together by scaffold proteins, each of which is selectively capable of interacting with a number of other proteins. In previous studies of rabbit retina, we found Synapse-Associated Protein-102 (SAP102) and Channel Associated Protein of Synapse-110 (Chapsyn110) selectively localized in the tips of horizontal cell processes at contacts with rod and cone photoreceptors, along with several interacting ion channels. We have examined the equivalent suites of proteins in mouse retina and found similarities and differences. In the mouse retina we identified Chapsyn110 as the scaffold selectively localized in the tips of horizontal cells contacting photoreceptors, with Sap102 more diffusely present. As in rabbit, the inward rectifier potassium channel Kir2.1 was present with Chapsyn110 on the tips of horizontal cell dendrites within photoreceptor invaginations, where it could provide a hyperpolarization-activated current that could contribute to ephaptic signaling in the photoreceptor synapses. Pannexin 1 and Pannexin 2, thought to play a role in ephaptic and/or pH mediated signaling, were present in the outer plexiform layer, but likely not in the horizontal cells. Polyamines regulate many ion channels and control the degree of rectification of Kir2.1 by imposing a voltage-dependent block. During the day polyamine immunolabeling was unexpectedly high in photoreceptor terminals compared to other areas of the retina. This content was significantly lower at night, when polyamine content was predominantly in Müller glia, indicating daily rhythms of polyamine content. Both rod and cone terminals displayed the same rhythm. While polyamine content was not prominent in horizontal cells, if polyamines are released, they may regulate the activity of Kir2.1 channels located in the tips of HCs. The rhythmic change in polyamine content of photoreceptor terminals suggests that a daily rhythm tunes the behavior of suites of ion channels within the photoreceptor synapses.

7.
Front Neurol ; 12: 694996, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381415

RESUMO

Objective: Systemic inflammation after subarachnoid hemorrhage (SAH) is implicated in delayed cerebral ischemia (DCI) and adverse clinical outcomes. We hypothesize that early changes in peripheral leukocytes will be associated with outcomes after SAH. Methods: SAH patients admitted between January 2009 and December 2016 were enrolled into a prospective observational study and were assessed for Hunt Hess Scale (HHS) at admission, DCI, and modified Ranked Scale (mRS) at discharge. Total white blood cell (WBC) counts and each component of the differential cell count were determined on the day of admission (day 0) to 8 days after bleed (day 8). Global cerebral edema (GCE) was assessed on admission CT, and presence of any infection was determined. Statistical tests included student's t-test, Chi-square test, and multivariate logistic regression (MLR) models. Results: A total of 451 subjects were analyzed. Total WBCs and neutrophils decreased initially reaching a minimum at day 4-5 after SAH. Monocyte count increased gradually after SAH and peaked between day 6-8, while basophils and lymphocytes decreased initially from day 0 to 1 and steadily increased thereafter. Neutrophil to lymphocyte ratio (NLR) reached a peak on day 1 and decreased thereafter. WBCs, neutrophils, monocytes, and NLR were higher in patients with DCI and poor functional outcomes. WBCs, neutrophils, and NLR were higher in subjects who developed infections. In MLR models, neutrophils and monocytes were associated with DCI and worse functional outcomes, while NLR was only associated with worse functional outcomes. Occurrence of infection was associated with poor outcome. Neutrophils and NLR were associated with infection, while monocytes were not. Monocytes were higher in males, and ROC curve analysis revealed improved ability of monocytes to predict DCI and poor functional outcomes in male subjects. Conclusions: Monocytosis was associated with DCI and poor functional outcomes after SAH. The association between neutrophils and NLR and infection may impact outcomes. Early elevation in monocytes had an improved ability to predict DCI and poor functional outcomes in males, which was independent of the occurrence of infection.

8.
Cells ; 9(10)2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036185

RESUMO

More than 1.5 million people suffer from Retinitis Pigmentosa, with many experiencing partial to complete vision loss. Regenerative therapies offer some hope, but their development is challenged by the limited regenerative capacity of mammalian model systems. As a step toward investigating regenerative therapies, we developed a zebrafish model of Retinitis Pigmentosa that displays ongoing regeneration. We used Tol2 transgenesis to express mouse rhodopsin carrying the P23H mutation and an epitope tag in zebrafish rod photoreceptors. Adult and juvenile fish were examined by immunofluorescence, TUNEL and BrdU incorporation assays. P23H transgenic fish expressed the transgene in rods from 3 days post fertilization onward. Rods expressing the mutant rhodopsin formed very small or no outer segments and the mutant protein was delocalized over the entire cell. Adult fish displayed thinning of the outer nuclear layer (ONL) and loss of rod outer segments, but retained a single, sparse row of rods. Adult fish displayed ongoing apoptotic cell death in the ONL and an abundance of proliferating cells, predominantly in the ONL. There was a modest remodeling of bipolar and Müller glial cells. This transgenic fish will provide a useful model system to study rod photoreceptor regeneration and integration.


Assuntos
Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Retinose Pigmentar/genética , Animais , Modelos Animais de Doenças , Retinose Pigmentar/patologia , Peixe-Zebra
9.
eNeuro ; 7(2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32179580

RESUMO

A variety of electrical synapses are capable of activity-dependent plasticity, including both activity-dependent potentiation and activity-dependent depression. In several types of neurons, activity-dependent electrical synapse plasticity depends on changes in the local Ca2+ environment. To enable study of local Ca2+ signaling that regulates plasticity, we developed a GCaMP Ca2+ biosensor fused to the electrical synapse protein Connexin 36 (Cx36). Cx36-GCaMP transfected into mammalian cell cultures formed gap junctions at cell-cell boundaries and supported Neurobiotin tracer coupling that was regulated by protein kinase A signaling in the same way as Cx36. Cx36-GCaMP gap junctions robustly reported local Ca2+ increases in response to addition of a Ca2+ ionophore with increases in fluorescence that recovered during washout. Recovery was strongly dependent on Na+-Ca2+ exchange activity. In cells transfected with NMDA receptor subunits, Cx36-GCaMP revealed transient and concentration-dependent increases in local Ca2+ on brief application of glutamate. In HeLa cells, glutamate application increased Cx36-GCaMP tracer coupling through a mechanism that depended in part on Ca2+, calmodulin-dependent protein kinase II (CaMKII) activity. This potentiation of coupling did not require exogenous expression of glutamate receptors, but could be accomplished by endogenously expressed glutamate receptors with pharmacological characteristics reminiscent of NMDA and kainate receptors. Analysis of RNA Sequencing data from HeLa cells confirmed expression of NMDA receptor subunits NR1, NR2C, and NR3B. In summary, Cx36-GCaMP is an effective tool to measure changes in the Ca2+ microenvironment around Cx36 gap junctions. Furthermore, HeLa cells can serve as a model system to study glutamate receptor-driven potentiation of electrical synapses.


Assuntos
Sinalização do Cálcio , Junções Comunicantes , Animais , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Células HeLa , Humanos , Proteína delta-2 de Junções Comunicantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...