Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38729154

RESUMO

Removal of somatic histone H3 lysine 9 trimethylation (H3K9me3) from the embryonic genome can improve the efficiency of mammalian cloning using somatic cell nuclear transfer (SCNT). However, this strategy involves the injection of histone demethylase mRNA into embryos, which is limiting because of its invasive and labor-consuming nature. Here, we report that treatment with an inhibitor of G9a (G9ai), the major histone methyltransferase that introduces H3K9me1/2 in mammals, greatly improved the development of mouse SCNT embryos. Intriguingly, G9ai caused an immediate reduction of H3K9me1/2, a secondary loss of H3K9me3 in SCNT embryos, and increased the birth rate of cloned pups about 5-fold (up to 3.9%). G9ai combined with the histone deacetylase inhibitor trichostatin A further improved this rate to 14.5%. Mechanistically, G9ai and TSA synergistically enhanced H3K9me3 demethylation and boosted zygotic genome activation. Thus, we established an easy, highly effective SCNT protocol that would enhance future cloning research and applications.

2.
Front Genet ; 13: 1032760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425066

RESUMO

Endogenous retroviruses (ERVs) in the mammalian genome play diverse roles in embryonic development. These developmentally related ERVs are generally repressed in somatic cells and therefore are likely repressed in embryos derived from somatic cell nuclear transfer (SCNT). In this study, we sought to identify ERVs that are repressed in SCNT-derived morulae, which might cause previously unexplained embryonic deaths shortly after implantation. Our transcriptome analysis revealed that, amongst ERV families, ERVK was specifically, and strongly downregulated in SCNT-derived embryos while other transposable elements including LINE and ERVL were unchanged. Among the subfamilies of ERVK, RLTR45-int was most repressed in SCNT-derived embryos despite its highest expression in control fertilized embryos. Interestingly, the nearby genes (within 5-50 kb, n = 18; 50-200 kb, n = 63) of the repressed RLTR45-int loci were also repressed in SCNT-derived embryos, with a significant correlation between them. Furthermore, lysine H3K27 acetylation was enriched around the RLTR45-int loci. These findings indicate that RLTR45-int elements function as enhancers of nearby genes. Indeed, deletion of two sequential RLTR45-int loci on chromosome 4 or 18 resulted in downregulations of nearby genes at the morula stage. We also found that RLTR45-int loci, especially SCNT-low, enhancer-like loci, were strongly enriched with H3K9me3, a repressive histone mark. Importantly, these H3K9me3-enriched regions were not activated by overexpression of H3K9me3 demethylase Kdm4d in SCNT-derived embryos, suggesting the presence of another epigenetic barrier repressing their expressions and enhancer activities in SCNT embryos. Thus, we identified ERVK subfamily RLTR45-int, putative enhancer elements, as a strong reprogramming barrier for SCNT (253 words).

3.
Genes Dev ; 36(1-2): 84-102, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34992147

RESUMO

The placenta is a highly evolved, specialized organ in mammals. It differs from other organs in that it functions only for fetal maintenance during gestation. Therefore, there must be intrinsic mechanisms that guarantee its unique functions. To address this question, we comprehensively analyzed epigenomic features of mouse trophoblast stem cells (TSCs). Our genome-wide, high-throughput analyses revealed that the TSC genome contains large-scale (>1-Mb) rigid heterochromatin architectures with a high degree of histone H3.1/3.2-H3K9me3 accumulation, which we termed TSC-defined highly heterochromatinized domains (THDs). Importantly, depletion of THDs by knockdown of CAF1, an H3.1/3.2 chaperone, resulted in down-regulation of TSC markers, such as Cdx2 and Elf5, and up-regulation of the pluripotent marker Oct3/4, indicating that THDs maintain the trophoblastic nature of TSCs. Furthermore, our nuclear transfer technique revealed that THDs are highly resistant to genomic reprogramming. However, when H3K9me3 was removed, the TSC genome was fully reprogrammed, giving rise to the first TSC cloned offspring. Interestingly, THD-like domains are also present in mouse and human placental cells in vivo, but not in other cell types. Thus, THDs are genomic architectures uniquely developed in placental lineage cells, which serve to protect them from fate reprogramming to stably maintain placental function.


Assuntos
Histonas , Trofoblastos , Animais , Diferenciação Celular/genética , Feminino , Histonas/genética , Histonas/metabolismo , Mamíferos , Camundongos , Placenta , Gravidez , Células-Tronco , Trofoblastos/metabolismo
4.
Sci Rep ; 11(1): 15438, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326397

RESUMO

Male germ cells undergo complex developmental processes eventually producing spermatozoa through spermatogenesis, although the molecular mechanisms remain largely elusive. We have previously identified somatic cell nuclear transfer-reprogramming resistant genes (SRRGs) that are highly enriched for genes essential for spermatogenesis, although many of them remain uncharacterized in knockout (KO) mice. Here, we performed a CRISPR-based genetic screen using C57BL/6N mice for five uncharacterized SRRGs (Cox8c, Cox7b2, Tuba3a/3b, Faiml, and Gm773), together with meiosis essential gene Majin as a control. RT-qPCR analysis of mouse adult tissues revealed that the five selected SRRGs were exclusively expressed in testis. Analysis of single-cell RNA-seq datasets of adult testis revealed stage-specific expression (pre-, mid-, or post-meiotic expression) in testicular germ cells. Examination of testis morphology, histology, and sperm functions in CRISPR-injected KO adult males revealed that Cox7b2, Gm773, and Tuba3a/3b are required for the production of normal spermatozoa. Specifically, Cox7b2 KO mice produced poorly motile infertile spermatozoa, Gm773 KO mice produced motile spermatozoa with limited zona penetration abilities, and Tuba3a/3b KO mice completely lost germ cells at the early postnatal stages. Our genetic screen focusing on SRRGs efficiently identified critical genes for male germ cell development in mice, which also provides insights into human reproductive medicine.


Assuntos
Sistemas CRISPR-Cas , Testes Genéticos/métodos , Técnicas de Transferência Nuclear , Espermatogênese/genética , Espermatozoides/crescimento & desenvolvimento , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Fertilização in vitro/métodos , Genes Essenciais , Masculino , Meiose/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Testículo/metabolismo
5.
Sci Rep ; 11(1): 14149, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34239008

RESUMO

Cryopreservation of mouse spermatozoa is widely used for the efficient preservation and safe transport of valuable mouse strains. However, the current cryopreservation method requires special containers (plastic straws), undefined chemicals (e.g., skim milk), liquid nitrogen, and expertise when handling sperm suspensions. Here, we report an easy and quick (EQ) sperm freezing method. The main procedure consists of only one step: dissecting a single cauda epididymis in a microtube containing 20% raffinose solution, which is then stored in a -80 °C freezer. The frozen-thawed spermatozoa retain practical fertilization rates after 1 (51%) or even 3 months (25%) with the C57BL/6 J strain, the most sensitive strain for sperm freezing. More than half of the embryos thus obtained developed into offspring after embryo transfer. Importantly, spermatozoa stored at -80 °C can be transferred into liquid nitrogen for indefinite storage. As far as we know, our EQ method is the easiest and quickest method for mouse sperm freezing and should be applicable in all laboratories without expertise in sperm cryopreservation. This technique can help avoid the loss of irreplaceable strains because of closure of animal rooms in emergency situations such as unexpected microbiological contamination or social emergencies such as the COVID-19 threat.


Assuntos
Criopreservação/métodos , Preservação do Sêmen/métodos , Animais , COVID-19 , Criopreservação/instrumentação , Transferência Embrionária , Emergências , Feminino , Fertilização in vitro/métodos , Masculino , Camundongos Endogâmicos C57BL , Preservação do Sêmen/instrumentação
6.
J Reprod Dev ; 66(5): 411-419, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32378528

RESUMO

Maintaining genomic integrity in mammalian early embryos, which are deficient in DNA damage repair, is critical for normal preimplantation and subsequent development. Abnormalities in DNA damage repair in preimplantation embryos can cause not only developmental arrest, but also diseases such as congenital disorders and cancers. Histone H4 lysine 20 monomethylation (H4K20me1) is involved in DNA damage repair and regulation of gene expression. However, little is known about the role of H4K20me1 during mouse preimplantation development. In this study, we revealed that H4K20me1 mediated by SETD8 is involved in maintaining genomic integrity. H4K20me1 was present throughout preimplantation development. In addition, reduction in the level of H4K20me1 by inhibition of SETD8 activity or a dominant-negative mutant of histone H4 resulted in developmental arrest at the S/G2 phase and excessive accumulation of DNA double-strand breaks. Together, our results suggest that H4K20me1, a type of epigenetic modification, is associated with the maintenance of genomic integrity and is essential for preimplantation development. A better understanding of the mechanisms involved in maintaining genome integrity during preimplantation development could contribute to advances in reproductive medicine and technology.


Assuntos
Blastocisto/citologia , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA , Epigênese Genética , Histona-Lisina N-Metiltransferase/genética , Mutação , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ciclo Celular/fisiologia , Feminino , Fertilização in vitro , Genoma , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos ICR , Oócitos/citologia , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...