Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37421105

RESUMO

High thermal conductivity steel (HTCS-150) is deposited onto non-heat-treated AISI H13 (N-H13) via powder-fed direct energy deposition (DED) based on the response surface methodology (RSM) to enhance the mechanical properties and thermal conductivity of N-H13, which is generally used as a hot-work tool steel. The main process parameters of the powder-fed DED are priorly optimized to minimize defects in the deposited regions and, therefore, to obtain homogeneous material properties. The deposited HTCS-150 is comprehensively evaluated through hardness, tensile, and wear tests at the different temperatures of 25, 200, 400, 600, and 800 °C. Compared to conventionally heat-treated (quenched and tempered) H13 (HT-H13), the hardness of the additively manufactured HTCS-150 slightly increases at 25 °C, whereas it does not show any significant difference above 200 °C. However, the HTCS-150 deposited on N-H13 shows a lower ultimate tensile strength and elongation than HT-H13 at all tested temperatures, and the deposition of the HTCS-150 on N-H13 enhances the ultimate tensile strength of N-H13. While the HTCS-150 does not show a significant difference in the wear rate below 400 °C compared to HT-H13, it shows a lower wear rate above 600 °C. The HTCS-150 reveals a higher thermal conductivity than the HT-H13 below 600 °C, whereas the behavior is reversed at 800 °C. The results suggest that the HTCS-150 additively manufactured via powder-fed direct energy deposition can enhance the mechanical and thermal properties of N-H13, including hardness, tensile strength, wear resistance, and thermal conductivity in a wide range of temperatures, often superior to those of HT-H13.

2.
Materials (Basel) ; 14(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807877

RESUMO

In this study, the Fe-8Cr-3V-2Mo-2W tool steel powder was deposited on the SCM420 substrate through the directed energy deposition (DED) process. This study focuses on the mechanical properties of the deposited Fe-8Cr-3V-2Mo-2W and the effect of heat treatment on it. The changes in the microstructural characteristics of the deposited region due to heat treatment after deposition were observed. The influence of heat treatment on the mechanical properties was then analyzed accordingly and hence, the hardness, wear, impact and tensile tests were conducted on the deposited material. These properties were compared with those of the commercial tool steel powder M2-deposited material and the carburized specimen. In the deposited Fe-8Cr-3V-2Mo-2W layer, an increased martensite phase fraction was obtained through post-heat treatment and the amount of precipitated carbides was also increased. This increased the hardness from 48 to 62 HRc after heat treatment and the wear resistance was significantly improved as well. The amount of impact energy absorbed decreased from 11 J before heat treatment to 6 J after heat treatment, but the tensile strength significantly increased from 607 to 922 MPa. When compared with the M2-deposited surface, the Fe-8Cr-3V-2Mo-2W deposits had 3% lower surface hardness and 76% lower fracture toughness but exhibited 56% higher tensile strength. When compared with the carburized SCM420, the Fe-8Cr-3V-2Mo-2W deposits exhibited 3% higher surface hardness and wear resistance, 90% lower fracture toughness and 5% higher tensile strength. This study shows that surface hardening through DED can exhibit similar or superior mechanical properties when compared to carburizing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...