Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 6(7): 782-6, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26191366

RESUMO

Protein tyrosine phosphatases (PTPs) are potential therapeutic targets for many diseases. Unfortunately, despite considerable drug discovery efforts devoted to PTPs, obtaining selective and cell permeable PTP inhibitors remains highly challenging. We describe a strategy to explore the existing drug space for previously unknown PTP inhibitory activities. This led to the discovery of cefsulodin as an inhibitor of SHP2, an oncogenic phosphatase in the PTP family. Crystal structure analysis of SHP2 interaction with cefsulodin identified sulfophenyl acetic amide (SPAA) as a novel phosphotyrosine (pTyr) mimetic. A structure-guided and SPAA fragment-based focused library approach produced several potent and selective SHP2 inhibitors. Notably, these inhibitors blocked SHP2-mediated signaling events and proliferation in several cancer cell lines. Thus, SPAA may serve as a new platform for developing chemical probes for other PTPs.

2.
Elife ; 42015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26218223

RESUMO

Whole-organism chemical screening can circumvent bottlenecks that impede drug discovery. However, in vivo screens have not attained throughput capacities possible with in vitro assays. We therefore developed a method enabling in vivo high-throughput screening (HTS) in zebrafish, termed automated reporter quantification in vivo (ARQiv). In this study, ARQiv was combined with robotics to fully actualize whole-organism HTS (ARQiv-HTS). In a primary screen, this platform quantified cell-specific fluorescent reporters in >500,000 transgenic zebrafish larvae to identify FDA-approved (Federal Drug Administration) drugs that increased the number of insulin-producing ß cells in the pancreas. 24 drugs were confirmed as inducers of endocrine differentiation and/or stimulators of ß-cell proliferation. Further, we discovered novel roles for NF-κB signaling in regulating endocrine differentiation and for serotonergic signaling in selectively stimulating ß-cell proliferation. These studies demonstrate the power of ARQiv-HTS for drug discovery and provide unique insights into signaling pathways controlling ß-cell mass, potential therapeutic targets for treating diabetes.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Células Secretoras de Insulina/fisiologia , Peixe-Zebra/fisiologia , Animais , Automação Laboratorial/métodos , Células Secretoras de Insulina/efeitos dos fármacos
3.
Oncol Rep ; 32(1): 419-24, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24841903

RESUMO

Cyclin-dependent kinase 5 (CDK5) is a potential target for prostate cancer treatment, the enzyme being essential for prostate tumor growth and formation of metastases. In the present study, we identified agents that target prostate cancer cells based on CDK5 expression. CDK5 activity was suppressed by transfection of PC3 prostate cancer cells with a dominant-negative construct (PC3 CDK5dn). PC3 CDK5dn and PC3 control cells were screened for compounds that selectively target cells based on CDK5 expression, utilizing the Johns Hopkins Drug Library. MTS proliferation, clonogenic and 3D growth assays were performed to validate the selected hits. Screening of 3,360 compounds identified rutilantin, ethacridine lactate and cetalkonium chloride as compounds that selectively target PC3 control cells and a tilorone analog as a selective inhibitor of PC3 CDK5dn cells. A PubMed literature study indicated that tilorone may have clinical use in patients. Validation experiments confirmed that tilorone treatment resulted in decreased PC3 cell growth and invasion; PC3 cells with inactive CDK5 were inhibited more effectively. Future studies are needed to unravel the mechanism of action of tilorone in CDK5 deficient prostate cancer cells and to test combination therapies with tilorone and a CDK5 inhibitor for its potential use in clinical practice.


Assuntos
Antineoplásicos/farmacologia , Quinase 5 Dependente de Ciclina/metabolismo , Invasividade Neoplásica/patologia , Neoplasias da Próstata/patologia , Tilorona/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
4.
Cancer Biol Ther ; 14(5): 401-10, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23377825

RESUMO

The N-myc downstream regulated gene 1 (NDRG1) has been identified as a metastasis-suppressor gene in prostate cancer (PCa). Compounds targeting PCa cells deficient in NDRG1 could potentially decrease invasion/metastasis of PCa. A cell based screening strategy was employed to identify small molecules that selectively target NDRG1 deficient PCa cells. DU-145 PCa cells rendered deficient in NDRG1 expression by a lentiviral shRNA-mediated knockdown strategy were used in the primary screen. Compounds filtered from the primary screen were further validated through proliferation and clonogenic survival assays in parental and NDRG1 knockdown PCa cells. Screening of 3360 compounds revealed irinotecan and cetrimonium bromide (CTAB) as compounds that exhibited synthetic lethality against NDRG1 deficient PCa cells. A three-dimensional (3-D) invasion assay was utilized to test the ability of CTAB to inhibit invasion of DU-145 cells. CTAB was found to remarkably decrease invasion of DU-145 cells in collagen matrix. Our results suggest that CTAB and irinotecan could be further explored for their potential clinical benefit in patients with NDRG1 deficient PCa.


Assuntos
Camptotecina/análogos & derivados , Proteínas de Ciclo Celular/deficiência , Compostos de Cetrimônio/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Camptotecina/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cetrimônio , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Irinotecano , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Tensoativos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...