Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 9: 704367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235159

RESUMO

In vertebrate embryos, dorsal midline tissues, including the notochord, the prechordal plate, and the floor plate, play important roles in patterning of the central nervous system, somites, and endodermal tissues by producing extracellular signaling molecules, such as Sonic hedgehog (Shh). In Ciona, hedgehog.b, one of the two hedgehog genes, is expressed in the floor plate of the embryonic neural tube, while none of the hedgehog genes are expressed in the notochord. We have identified a cis-regulatory region of hedgehog.b that was sufficient to drive a reporter gene expression in the floor plate. The hedgehog.b cis-regulatory region also drove ectopic expression of the reporter gene in the endodermal strand, suggesting that the floor plate and the endodermal strand share a part of their gene regulatory programs. The endodermal strand occupies the same topographic position of the embryo as does the vertebrate hypochord, which consists of a row of single cells lined up immediately ventral to the notochord. The hypochord shares expression of several genes with the floor plate, including Shh and FoxA, and play a role in dorsal aorta development. Whole-embryo single-cell transcriptome analysis identified a number of genes specifically expressed in both the floor plate and the endodermal strand in Ciona tailbud embryos. A Ciona FoxA ortholog FoxA.a is shown to be a candidate transcriptional activator for the midline gene battery. The present findings suggest an ancient evolutionary origin of a common developmental program for the midline structures in Olfactores.

2.
Development ; 148(3)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33419874

RESUMO

The notochord is a defining feature of the chordates. The transcription factor Brachyury (Bra) is a key regulator of notochord fate but here we show that it is not a unitary master regulator in the model chordate Ciona Ectopic Bra expression only partially reprograms other cell types to a notochord-like transcriptional profile and a subset of notochord-enriched genes is unaffected by CRISPR Bra disruption. We identify Foxa.a and Mnx as potential co-regulators, and find that combinatorial cocktails are more effective at reprogramming other cell types than Bra alone. We reassess the network relationships between Bra, Foxa.a and other components of the notochord gene regulatory network, and find that Foxa.a expression in the notochord is regulated by vegetal FGF signaling. It is a direct activator of Bra expression and has a binding motif that is significantly enriched in the regulatory regions of notochord-enriched genes. These and other results indicate that Bra and Foxa.a act together in a regulatory network dominated by positive feed-forward interactions, with neither being a classically defined master regulator.


Assuntos
Ciona/genética , Ciona/metabolismo , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Notocorda/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Animais , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Notocorda/crescimento & desenvolvimento , Transativadores , Fatores de Transcrição/metabolismo
3.
Front Cell Dev Biol ; 9: 804032, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127721

RESUMO

A major goal in biology is to understand the rules by which cis-regulatory sequences control spatially and temporally precise expression patterns. Here we present a systematic dissection of the proximal enhancer for the notochord-specific transcription factor brachyury in the ascidian chordate Ciona. The study uses a quantitative image-based reporter assay that incorporates a dual-reporter strategy to control for variable electroporation efficiency. We identified and mutated multiple predicted transcription factor binding sites of interest based on statistical matches to the JASPAR binding motif database. Most sites (Zic, Ets, FoxA, RBPJ) were selected based on prior knowledge of cell fate specification in both the primary and secondary notochord. We also mutated predicted Brachyury sites to investigate potential autoregulation as well as Fos/Jun (AP1) sites that had very strong matches to JASPAR. Our goal was to quantitatively define the relative importance of these different sites, to explore the importance of predicted high-affinity versus low-affinity motifs, and to attempt to design mutant enhancers that were specifically expressed in only the primary or secondary notochord lineages. We found that the mutation of all predicted high-affinity sites for Zic, FoxA or Ets led to quantifiably distinct effects. The FoxA construct caused a severe loss of reporter expression whereas the Ets construct had little effect. A strong Ets phenotype was only seen when much lower-scoring binding sites were also mutated. This supports the enhancer suboptimization hypothesis proposed by Farley and Levine but suggests that it may only apply to some but not all transcription factor families. We quantified reporter expression separately in the two notochord lineages with the expectation that Ets mutations and RBPJ mutations would have distinct effects given that primary notochord is induced by Ets-mediated FGF signaling whereas secondary notochord is induced by RBPJ/Su(H)-mediated Notch/Delta signaling. We found, however, that ETS mutations affected primary and secondary notochord expression relatively equally and that RBPJ mutations were only moderately more severe in their effect on secondary versus primary notochord. Our results point to the promise of quantitative reporter assays for understanding cis-regulatory logic but also highlight the challenge of arbitrary statistical thresholds for predicting potentially important sites.

4.
Sci Rep ; 10(1): 18590, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122709

RESUMO

Tunicate larvae have a non-reproductive gonadotropin-releasing hormone (GnRH) system with multiple ligands and receptor heterodimerization enabling complex regulation. In Ciona intestinalis type A larvae, one of the gnrh genes, gnrh2, is conspicuously expressed in the motor ganglion and nerve cord, which are homologous structures to the hindbrain and spinal cord, respectively, of vertebrates. The gnrh2 gene is also expressed in the proto-placodal sensory neurons, which are the proposed homologue of vertebrate olfactory neurons. Tunicate larvae occupy a non-reproductive dispersal stage, yet the role of their GnRH system remains elusive. In this study, we investigated neuronal types of gnrh2-expressing cells in Ciona larvae and visualized the activity of these cells by fluorescence imaging using a calcium sensor protein. Some cholinergic neurons and dopaminergic cells express gnrh2, suggesting that GnRH plays a role in controlling swimming behavior. However, none of the gnrh2-expressing cells overlap with glycinergic or GABAergic neurons. A role in motor control is also suggested by a relationship between the activity of gnrh2-expressing cells and tail movements. Interestingly, gnrh2-positive ependymal cells in the nerve cord, known as a kind of glia cells, actively produced Ca2+ transients, suggesting that active intercellular signaling occurs in the glia cells of the nerve cord.


Assuntos
Cálcio/metabolismo , Ciona intestinalis/metabolismo , Neurônios GABAérgicos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Larva/metabolismo , Neuroglia/metabolismo , Receptores LHRH/metabolismo , Animais , Sinalização do Cálcio , Ciona intestinalis/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Transdução de Sinais
5.
Adv Exp Med Biol ; 1029: 49-68, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29542080

RESUMO

Ascidians possess relatively small and compact genomes. This feature enables us to easily isolate cis-regulatory DNAs of genes of interest. Particularly, cis-regulatory DNAs of genes showing tissue- or cell-type-specific expression are routinely used for the artificial induction of gene expression. This strategy helps us to label cells, tissues, and organs of interest, and to investigate gene functions through overexpression, ectopic expression, and the disruption of functions by dominant-negative forms. Thus, cis-regulatory DNAs provide a powerful tool for tissue-specific genetic manipulation in studies of ascidian development and physiology. This chapter summarizes the types of cis-regulatory DNAs as a genetic manipulation tool, describes the methods used for isolating cis-regulatory DNAs, and provide reported examples of the use of cis-regulatory DNAs as molecular tools for investigating gene functions.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Transferência de Genes , Urocordados/genética , Animais , Linhagem da Célula , DNA Recombinante/administração & dosagem , DNA Recombinante/genética , Embrião não Mamífero/citologia , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Sintéticos , Técnicas Genéticas , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Larva , Especificidade de Órgãos , Regiões Promotoras Genéticas , Transcrição Gênica , Transgenes , Urocordados/embriologia , Urocordados/crescimento & desenvolvimento
6.
Nat Ecol Evol ; 1(11): 1722-1730, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28963548

RESUMO

Despite morphological diversification of chordates over 550 million years of evolution, their shared basic anatomical pattern (or 'bodyplan') remains conserved by unknown mechanisms. The developmental hourglass model attributes this to phylum-wide conserved, constrained organogenesis stages that pattern the bodyplan (the phylotype hypothesis); however, there has been no quantitative testing of this idea with a phylum-wide comparison of species. Here, based on data from early-to-late embryonic transcriptomes collected from eight chordates, we suggest that the phylotype hypothesis would be better applied to vertebrates than chordates. Furthermore, we found that vertebrates' conserved mid-embryonic developmental programmes are intensively recruited to other developmental processes, and the degree of the recruitment positively correlates with their evolutionary conservation and essentiality for normal development. Thus, we propose that the intensively recruited genetic system during vertebrates' organogenesis period imposed constraints on its diversification through pleiotropic constraints, which ultimately led to the common anatomical pattern observed in vertebrates.


Assuntos
Evolução Biológica , Pleiotropia Genética , Vertebrados/genética , Animais , Filogenia , Vertebrados/anatomia & histologia , Vertebrados/crescimento & desenvolvimento
7.
Dev Biol ; 420(1): 178-185, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27789227

RESUMO

The Ciona intestinalis larva has two distinct photoreceptor organs, a conventional pigmented ocellus and a nonpigmented ocellus, that are asymmetrically situated in the brain. The ciliary photoreceptor cells of these ocelli resemble visual cells of the vertebrate retina. Precise elucidation of the lineage of the photoreceptor cells will be key to understanding the developmental mechanisms of these cells as well as the evolutionary relationships between the photoreceptor organs of ascidians and vertebrates. Photoreceptor cells of the pigmented ocellus have been thought to develop from anterior animal (a-lineage) blastomeres, whereas the developmental origin of the nonpigmented ocellus has not been determined. Here, we show that the photoreceptor cells of both ocelli develop from the right anterior vegetal hemisphere: those of the pigmented ocellus from the right A9.14 cell and those of the nonpigmented ocellus from the right A9.16 cell. The pigmented ocellus is formed by a combination of two lineages of cells with distinct embryonic origins: the photoreceptor cells originate from a medial portion of the A-lineage neural plate, while the pigment cell originates from the lateral edge of the a-lineage neural plate. In light of the recently proposed close evolutionary relationship between the ocellus pigment cell of ascidians and the cephalic neural crest of vertebrates, the ascidian ocellus may represent a prototypic contribution of the neural crest to a cranial sensory organ.


Assuntos
Linhagem da Célula , Ciona intestinalis/citologia , Crista Neural/citologia , Tubo Neural/citologia , Células Fotorreceptoras de Invertebrados/citologia , Órgãos dos Sentidos/citologia , Animais , Contagem de Células , Ciona intestinalis/metabolismo , Larva/citologia , Imagem Óptica , Células Fotorreceptoras de Invertebrados/metabolismo , Pigmentação , Epitélio Pigmentado da Retina/citologia
8.
Genome Res ; 26(1): 140-50, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26668163

RESUMO

The tunicate Ciona intestinalis, an invertebrate chordate, has recently emerged as a powerful model organism for gene regulation analysis. However, few studies have been conducted to identify and characterize its transcription start sites (TSSs) and promoters at the genome-wide level. Here, using TSS-seq, we identified TSSs at the genome-wide scale and characterized promoters in C. intestinalis. Specifically, we identified TSS clusters (TSCs), high-density regions of TSS-seq tags, each of which appears to originate from an identical promoter. TSCs were found not only at known TSSs but also in other regions, suggesting the existence of many unknown transcription units in the genome. We also identified candidate promoters of 79 ribosomal protein (RP) genes, each of which had the major TSS in a polypyrimidine tract and showed a sharp TSS distribution like human RP gene promoters. Ciona RP gene promoters, however, did not appear to have typical TATA boxes, unlike human RP gene promoters. In Ciona non-RP promoters, two pyrimidine-purine dinucleotides, CA and TA, were frequently used as TSSs. Despite the absence of CpG islands, Ciona TATA-less promoters showed low expression specificity like CpG-associated human TATA-less promoters. By using TSS-seq, we also predicted trans-spliced gene TSSs and found that their downstream regions had higher G+T content than those of non-trans-spliced gene TSSs. Furthermore, we identified many putative alternative promoters, some of which were regulated in a tissue-specific manner. Our results provide valuable information about TSSs and promoter characteristics in C. intestinalis and will be helpful in future analysis of transcriptional regulation in chordates.


Assuntos
Ciona intestinalis/genética , Regiões Promotoras Genéticas , Sítio de Iniciação de Transcrição , Animais , Drosophila/genética , Regulação da Expressão Gênica , Humanos , Família Multigênica , Trans-Splicing
9.
Zoolog Sci ; 27(2): 76-83, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20141411

RESUMO

The relatively simple structure of ascidians and the number of associated molecular resources that are available make ascidians an excellent experimental system for Investigating the molecular mechanisms underlying neural tube formation. The ascidian neural tube demonstrates the same basic morphology as that of vertebrates. We have described the expression of the neural tubespecific gene CiNut1, which is expressed within neural tube precursor cells from the gastrula stage, and along the entire length of the neural tube during its formation. In this study, we focused on the transcriptional mechanisms that regulate CiNut1 expression. We found that an approximately 1.0 kb upstream sequence was able to recapitulate endogenous CiNut1 expression. A deletion analysis showed that the 119 bp upstream fragment containing two ZicL-binding consensus sequences and one Fox core sequence could also drive the neural tube-specific expression. When mutations were Introduced into the distal ZicL binding site (ZicL1), the neural tube-specific expression almost disappeared. Although the Importance of the proximal ZicL site (ZicL2) and the Fox core sequence have yet to be elucidated, we hypothesize that ZicL regulates gene transcription in the entire neural tube of the ascidian.


Assuntos
Ciona intestinalis/embriologia , Ciona intestinalis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Tubo Neural/metabolismo , Animais , Embrião não Mamífero/metabolismo , Sequências Reguladoras de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...