Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(6): 4799-4811, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37031323

RESUMO

BACKGROUND: Upland cotton is one of the utmost significant strategic fiber crops, and play a vital role in the global textile industry. METHODS AND RESULTS: A total of 128 genotypes comprised Gossypium hirsutum L, Gossypium barbadense L., and pure lines were used to examine genetic diversity using iPBS-retrotransposon markers system. Eleven highly polymorphic primers yielded 287 bands and 99.65% polymorphism was recorded. The mean polymorphism information content was estimated at 0.297 and the average diversity indices for the effective number of alleles, Shannon's information index, and overall gene diversity were 1.481, 0.443, and 0.265, respectively. The analysis of molecular variance (AMOVA) revealed that 69% of the genetic variation was within the population. A model-based STRUCTURE algorithm divided the entire germplasm into four populations and one un-classified population, the genotypes G42 (originating in Egypt) and G128 (originating in the United States), showed the highest genetic distance (0.996) so these genotypes could be suggested for breeding programs as parental lines. CONCLUSIONS: This is the first investigation using an iPBS-retrotransposon marker system to examine the genetic diversity and population structure of upland cotton germplasm. The rich diversity found in upland cotton germplasm could be exploited as a genetic resource when developing breeding programs and could also help with efforts to breed cotton around the world. These findings also show the applicability and effectiveness of iPBS-retrotransposons for the molecular characterization of cotton germplasm.


Assuntos
Gossypium , Retroelementos , Gossypium/genética , Variação Genética/genética , Melhoramento Vegetal , Polimorfismo Genético/genética , Fibra de Algodão
2.
Mol Biol Rep ; 49(6): 5547-5554, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35596053

RESUMO

Current and advanced breeding tools are being used to improve economically important horticultural crops to meet the consumers' needs and preferences. Genotyping-by-sequencing (GBS) is an extremely useful tool in the investigation and analysis of the genetic diversity of different cultivars. Based on a broad range of genetic backgrounds like single nucleotide polymorphism (SNPs), GBS is known as a novel technique to facilitate the detection of quantitative trait loci (QTL) regions robustly linked with interested traits compared to genome-wide association study (GWAS) and QTL. GBS has gained popularity among breeders in recent years and it is also employed in cucumber breeding programs. Cucumbers (C. sativus L.) are monoecious, gynoecious and some of them are parthenocarpic species. Cucumber is one of the most economical and essential crops in the Cucurbitaceae family. For time immemorial, cucumber has been produced and consumed all over the world like other cucurbits. To a large extent, cultivated cucurbits are beneficial to human health for providing necessary minerals and fibers.Therefore, this review portrays the current status of advances made by using GBS and its combination with other tools in various studies of cucumber such as the use of GBS and single nucleotide polymorphism (SNP) markers, GBS and GWAS, also with QTL and marker-assisted selection (MAS) are applied to display and detect explicit genetic architecture complex traits in crops and chromosome rearrangements.Cucumber breeding programs have undoubtedly benefited from genotyping-by-sequencing. Using the GBS method, research discovered lots of new candidate genes that control various traits including spine color, fruit stalk-end color, and disease resistance in cucumber lines.


Assuntos
Cucumis sativus , Mapeamento Cromossômico/métodos , Cucumis sativus/genética , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética , Tecnologia
3.
Mol Biol Rep ; 48(9): 6323-6333, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34383245

RESUMO

BACKGROUND: Scarlet eggplant (Solanum aethiopicum gr. gilo) is a part of African indigenous vegetables and acknowledged as a source of variations in the breeding of Brinjal. Since its genetic diversity is still largely unexplored, therefore genetic diversity and population structure of this plant were investigated in this study. METHODS AND RESULTS: Scarlet eggplant germplasm made of fifty-two accessions originated from two districts of Rwanda was assessed by employing the iPBS-retrotransposon markers system. Twelve most polymorphic primers were employed for molecular characterization and they yielded 329 total bands whereupon 85.03% were polymorphic. The recorded mean polymorphism information content was 0.363 and other diversity indices such as; mean the effective number of alleles, mean Shannon's information index and gene diversity with the following values; 1.298, 0.300 and 0.187 respectively. A superior level of diversity was noticed among accessions from Musanze district. The model-based structure, neighbor-joining, and principal coordinate analysis (PCoA) gathered scarlet germplasm in a divergence manner to their collection district. Analysis of molecular variance (AMOVA) displayed that the utmost variations (81%) in scarlet eggplant germplasm are resulting in differences within populations. CONCLUSIONS: The extensive diversity of scarlet eggplant in Rwanda might be used to form the base and genetic resource of an exhaustive breeding program of this economically important African indigenous vegetable. For instance, accessions MZE53 and GKE11 might be proposed as parent candidates due to their high relative genetic distance (0.6781).


Assuntos
Primers do DNA/genética , Polimorfismo Genético , Retroelementos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sementes/genética , Solanum melongena/genética , Solanum/genética , Alelos , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Melhoramento Vegetal , Ruanda , Sequências Repetidas Terminais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA