Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 17014, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257967

RESUMO

A novel type of agarose gel microcapsule (AGM), consisting of an alginate picolitre sol core and an agarose gel shell, was developed to obtain high-quality, single-cell, amplified genomic DNA of bacteria. The AGM is easy to prepare in a stable emulsion with oil of water-equivalent density, which prevents AGM aggregation, with only standard laboratory equipment. Single cells from a pure culture of Escherichia coli, a mock community comprising 15 strains of human gut bacteria, and a termite gut bacterial community were encapsulated within AGMs, and their genomic DNA samples were prepared with massively parallel amplifications in a tube. The genome sequencing did not need second-round amplification and showed an average genome completeness that was much higher than that obtained using a conventional amplification method on the microlitre scale, regardless of the genomic guanine-cytosine content. Our novel method using AGM will allow many researchers to perform single-cell genomics easily and effectively, and can accelerate genomic analysis of yet-uncultured microorganisms.


Assuntos
Bactérias , Genômica , Humanos , Cápsulas , Sefarose , Emulsões , Genômica/métodos , Bactérias/genética , Alginatos , DNA , Água , Citosina , Guanina , Genoma Bacteriano
2.
Artigo em Inglês | MEDLINE | ID: mdl-35993221

RESUMO

A co-culture of a novel thermoacidophilic, obligate symbiotic archaeon, designated as strain MJ1T, with its specific host archaeon Metallosphaera sedula strain MJ1HA was obtained from a terrestrial hot spring in Japan. Strain MJ1T grew in the co-culture under aerobic conditions. Coccoid cells of strain MJ1T were 200-500 nm in diameter, and attached to the MJ1HA cells in the co-culture. The ranges and optima of the growth temperature and pH of strain MJ1T in the co-culture were 60-75 °C (optimum, 65-70 °C) and pH 1.0-4.0 (optimum, pH 2.5), respectively. Core lipids of dialkyl glycerol tetraethers (GDGT)-3 and GDGT-4 were highly abundant in MJ1T cells concentrated from the co-culture. Strain MJ1T has a small genome (0.67 Mbp) lacking genes for biosynthesis of essential biomolecules, such as nucleotides, lipids and ATP. The genomic DNA G+C content was 24.9 mol%. The 16S rRNA gene sequence of strain MJ1T was most closely related to that of the cultivated species, 'Nanopusillus acidilobi' strain N7A (85.8 % similarity). Based on phylogenetic and physiological characteristics, we propose the name Nanobdella aerobiophila gen. nov., sp. nov. to accommodate the strain MJ1T (=JCM 33616T=DSM 111728T). In addition, we propose the names Nanobdellaceae fam. nov., Nanobdellales ord. nov., and Nanobdellia class. nov. to accommodate the novel genus.


Assuntos
Archaea , Ácidos Graxos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35022241

RESUMO

Decades of culture-independent analyses have resulted in proposals of many tentative archaeal phyla with no cultivable representative. Members of DPANN (an acronym of the names of the first included phyla Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanohaloarchaeota, and Nanoarchaeota), an archaeal superphylum composed of at least 10 of these tentative phyla, are generally considered obligate symbionts dependent on other microorganisms. While many draft/complete genome sequences of DPANN archaea are available and their biological functions have been considerably predicted, only a few examples of their successful laboratory cultivation have been reported, limiting our knowledge of their symbiotic lifestyles. Here, we investigated physiology, morphology, and host specificity of an archaeon of the phylum "Candidatus Micrarchaeota" (ARM-1) belonging to the DPANN superphylum by cultivation. We constructed a stable coculture system composed of ARM-1 and its original host Metallosphaera sp. AS-7 belonging to the order Sulfolobales Further host-switching experiments confirmed that ARM-1 grew on five different archaeal species from three genera-Metallosphaera, Acidianus, and Saccharolobus-originating from geologically distinct hot, acidic environments. The results suggested the existence of DPANN archaea that can grow by relying on a range of hosts. Genomic analyses showed inferred metabolic capabilities, common/unique genetic contents of ARM-1 among cultivated micrarchaeal representatives, and the possibility of horizontal gene transfer between ARM-1 and members of the order Sulfolobales Our report sheds light on the symbiotic lifestyles of DPANN archaea and will contribute to the elucidation of their biological/ecological functions.


Assuntos
Archaea/genética , Archaea/fisiologia , Genoma Arqueal , Simbiose/genética , Simbiose/fisiologia , Archaea/classificação , Archaea/citologia , Técnicas de Cocultura , Evolução Molecular , Transferência Genética Horizontal , Genômica , Nanoarchaeota , Filogenia
4.
ISME J ; 14(10): 2449-2460, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32514117

RESUMO

The microbiome in the hindgut of wood-feeding termites comprises various species of bacteria, archaea, and protists. This gut community is indispensable for the termite, which thrives solely on recalcitrant and nitrogen-poor wood. However, the difficulty in culturing these microorganisms has hindered our understanding of the function of each species in the gut. Although protists predominate in the termite gut microbiome and play a major role in wood digestion, very few culture-independent studies have explored the contribution of each species to digestion. Here, we report single-cell transcriptomes of four protists species comprising the protist population in worldwide pest Coptotermes formosanus. Comparative transcriptomic analysis revealed that the expression patterns of the genes involved in wood digestion were different among species, reinforcing their division of roles in wood degradation. Transcriptomes, together with enzyme assays, also suggested that one of the protists, Cononympha leidyi, actively degrades chitin and assimilates it into amino acids. We propose that C. leidyi contributes to nitrogen recycling and inhibiting infection from entomopathogenic fungi through chitin degradation. Two of the genes for chitin degradation were further revealed to be acquired via lateral gene transfer (LGT) implying the importance of LGT in the evolution of symbiosis. Our single-cell-based approach successfully characterized the function of each protist in termite hindgut and explained why the gut community includes multiple species.


Assuntos
Microbioma Gastrointestinal , Isópteros , Animais , Eucariotos , Filogenia , Simbiose , Transcriptoma
5.
Oecologia ; 156(1): 193-202, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18297313

RESUMO

We examined 15 traits in leaves and stems related to leaf C economy and water use for 32 co-existing angiosperms at ridge sites with shallow soil in the Bonin Islands. Across species, stem density was positively correlated to leaf mass per area (LMA), leaf lifespan (LLS), and total phenolics and condensed tannins per unit leaf N (N-based), and negatively correlated to leaf osmotic potential and saturated water content in leaves. LMA and LLS were negatively correlated to photosynthetic parameters, such as area-, mass-, and N-based assimilation rates. Although stem density and leaf osmotic potential were not associated with photosynthetic parameters, they were associated with some parameters of the leaf C economy, such as LMA and LLS. In the principal component (PCA) analysis, the first three axes accounted for 74.4% of total variation. Axis 1, which explained 41.8% of the total variation, was well associated with parameters for leaf C and N economy. Similarly, axis 2, which explained 22.3% of the total variation, was associated with parameters for water use. Axis 3, which explained 10.3% of the total variation, was associated with chemical defense within leaves. Axes 1 and 2 separated functional types relatively well, i.e., creeping trees, ruderal trees, other woody plants, C(3) shrubs and forbs, palms, and CAM plants, indicating that plant functional types were characterized by similar attributes of traits related to leaf C and N economy and water use. In addition, when the plot was extended by two unrelated traits, leaf mass-based assimilation rates and stem density, it also separated these functional types. These data indicate that differences in the functional types with contrasting plant strategies can be attributed to functional integration among leaf C economy, hydraulics, and leaf longevity, and that both leaf mass-based assimilation rates and stem density are key factors reflecting the different functions of plant species.


Assuntos
Carbono/metabolismo , Magnoliopsida/anatomia & histologia , Magnoliopsida/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/anatomia & histologia , Desastres , Japão , Nitrogênio/metabolismo , Fenóis/metabolismo , Fotossíntese , Folhas de Planta/anatomia & histologia , Taninos/metabolismo , Água/metabolismo
6.
Tree Physiol ; 26(4): 449-57, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16414924

RESUMO

We tested the hypothesis that sapling growth following a sudden increase in solar irradiance is related to recovery from photoinhibition and the balance between rate of production of new leaves and rate of abscision of old leaves. Leaf gas exchange, chlorophyll fluorescence and relative growth rate (RGR) of stem basal area were measured following the sudden exposure of shade-grown (7% of full sunlight) saplings of four Shorea species to full sunlight. Sudden exposure to full sunlight resulted in an immediate and substantial reduction in dark-adapted quantum yield of photosystem II (Fv/Fm), followed by a gradual recovery in all species. Near light-saturated net assimilation rate (A max) and area-based leaf chlorophyll concentration ([Chl area]) also declined immediately after exposure. Eleven days after exposure, A max had recovered to pre-exposure values in all species, whereas [Chl area] had not recovered. Across species, RGR of stem basal area increased with increasing RGR of the number of leaves following exposure to full sunlight. The interspecific variations in RGR of stem basal area suggest that new leaf production is crucial for determining the potential growth of saplings following gap formation.


Assuntos
Luz , Folhas de Planta/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Biomassa , Clorofila/metabolismo , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/fisiologia , Especificidade da Espécie , Árvores/metabolismo , Árvores/fisiologia
7.
Oecologia ; 143(2): 189-97, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15619094

RESUMO

We hypothesized that pioneer and late successional species show different morphological and physiological responses in water use after gap formation. The magnitude of the responses was compared between two pioneer species (Macaranga gigantea and Trema orientalis) and four late successional species (Shorea sp.), in an experiment in which saplings were transferred from shade to sun. Although transpiration demand increased following the transfer, root hydraulic conductivity (Lp(r)) decreased. Lp(r) was sensitive to brief treatments with HgCl(2) (a specific inhibitor of aquaporins). This allows Lp(r) to be divided into two components: cell-to-cell and apoplastic pathways. The Lp(r) of cell-to-cell pathway decreased in all species following the transfer, relating to aquaporin depression in roots. Following the transfer, leaf osmotic potentials at full hydration decreased and both leaf mass per area [leaf mass/leaf area (LMA)] and fine-root surface area/leaf surface area (root SA/leaf SA) increased in almost all species, allowing saplings to compensate for the decrease in Lp(r). Physiologically, pioneer species showed larger decreases in Lp(r) and more effective osmotic adjustment than late successional species, and morphologically, pioneer species showed larger increases in root SA/leaf SA and LMA. Water balance at the whole-plant level should be regulated by coupled responses between the aboveground and the belowground parts. Interspecific differences in responses after gap formation suggest niche differentiation in water use between pioneer and late successional species in accordance with canopy-gap size.


Assuntos
Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Luz Solar , Árvores/fisiologia , Água/fisiologia , Análise de Variância , Aquaporinas/antagonistas & inibidores , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Cloreto de Mercúrio/farmacologia , Pressão Osmótica , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Transpiração Vegetal/fisiologia , Clima Tropical , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...