Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Pract Thromb Haemost ; 8(4): 102479, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39114481

RESUMO

Background: Venous thromboembolic events have been reported in persons with hemophilia A who received emicizumab and activated prothrombin complex concentrate (APCC) concomitantly, but the relevant mechanism(s) remains unclear. We speculated that activated protein C (APC) and antithrombin (AT) resistance might be associated with these adverse events. Objectives: To investigate APC and AT resistance in factor (F)VIII-deficient (FVIIIdef) plasma in the presence of emicizumab and APCC. Methods: In pooled normal plasma or FVIIIdef plasma samples mixed with emicizumab (50 µg/mL) and FVIII-bypassing agents, including recombinant FVIIa (2.2 µg/mL), APCC (1.3 IU/mL), or plasma-derived FVIIa/FX (1.5 µg/mL), the suppression effect of AT (0-2.4 µM) and APC (0-16 nM) was assessed by tissue factor-triggered thrombin generation assay. The APC effects in FVIIIdef plasma with the copresence of emicizumab, FII (1.3 µM), and/or FIXa (280 pM) were also examined. Results: The AT resistance in emicizumab and each bypassing agent was not observed. Moreover, APC dose-dependent suppression effect was observed in pooled normal plasma or FVIIIdef plasma mixed with emicizumab and recombinant FVIIa or plasma-derived FVIIa/FX. However, APC-catalyzed inactivation had little effect on thrombin generation assay potential in FVIIIdef plasma spiked with emicizumab and APCC. The addition of FIXa to emicizumab in FVIIIdef plasma could lead to partial APC resistance. Furthermore, FVIIIdef plasma spiked with emicizumab, FIXa, and FII was markedly resistant to APC-mediated inactivation. Conclusion: FII and FIXa in APCCs were key clotting factors for APC resistance in FVIIIdef plasma supplemented with emicizumab and APCCs. The APC resistance in persons with hemophilia A receiving emicizumab and APCC may contribute to venous thromboembolic events.

2.
J Thromb Haemost ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950780

RESUMO

BACKGROUND: Factor (F)V is pivotal in both procoagulant and anticoagulant mechanisms. The present report describes a novel F5 mutation in a FV-deficient patient (FV activity, 6 IU/dL; FV antigen, 32 IU/dL) complicated by recurrent deep vein thrombosis. The patient demonstrated activated protein C resistance (APCR) with compound heterozygous mutations consisting of FV-Y1961C (FVKanazawa) and FV-1982_1983del. OBJECTIVES: To clarify thrombotic mechanisms associated with this FV abnormality. METHODS AND RESULTS: Levels of FV-1982_1983del were below the detection sensitivity in our expression experiments using human embryonic kidney 293T cells, and analyses were targeted, therefore, on the FV-Y1961C mutation. Activated partial thromboplastin time-based clotting assays demonstrated that FV-Y1961C exhibited APCR and that the reduced activated protein C (APC) susceptibility in FVa-Y1961C resulted in a marked depression of APC-catalyzed inactivation with delayed cleavage at Arg506 and little cleavage at Arg306 with or without protein S. The APC cofactor activity of FV-Y1961C in APC-catalyzed FVIIIa inactivation promoted by Arg336 cleavage in FVIII was impaired. The binding affinity of FVa-Y1961C to phospholipid membranes was reduced in reactions involving APC/protein S-catalyzed inactivation and in prothrombinase activity. Furthermore, the addition of FVa-Y1961C to plasma failed to inhibit tissue factor-induced procoagulant function. These characteristics were similar to those of FV-W1920R (FVNara) and FV-A2086D (FVBesançon). CONCLUSION: We identified a compound heterozygous FV-Y1961C mutation in the C1 domain representing a novel FV mutation (FVKanazawa) resulting in not only APCR due to impaired FVa susceptibility and FV cofactor activity for APC function but also impaired inhibition of tissue factor-induced procoagulant function. These defects in anticoagulant function associated with FV in FV-Y1961C contributed to a prothrombotic state.

3.
Int J Hematol ; 119(2): 109-118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38112996

RESUMO

Patients with hemophilia A (PwHA) may have concurrent deficiency of representative anticoagulant proteins, protein (P)C, PS, and antithrombin (AT), which reduces bleeding frequency. However, emicizumab-driven hemostasis in PwHA with such thrombophilic potential remains unclarified. This study investigated the influence of natural anticoagulants on emicizumab-driven coagulation in HA model plasma. Various concentrations of PS and AT were added to PS-deficient plasma and AT-deficient plasma in the presence of anti-FVIII antibody (FVIIIAb; 10BU/mL). PC-deficient plasma was mixed with normal plasma at various concentrations in the presence of FVIIIAb. Emicizumab (50 µg/mL) was added to these thrombophilic HA model plasmas, prior to tissue factor/ellagic acid-triggered thrombin generation assays. Co-presence of emicizumab increased peak thrombin values (PeakTh) dependent on PS, AT, and PC concentrations. Maximum coagulation potentials in the PS-reduced HA model plasmas remained normal in the presence of emicizumab. PeakTh were close to normal in the presence of 50%AT irrespective of emicizumab, but were higher than normal in the presence of 25%AT. Addition of recombinant FVIIa (corresponding to an administered dose of 90 µg/kg) enhanced coagulation potential to normal levels. Our findings provide novel information on hemostatic regulation in emicizumab-treated PwHA with a possible thrombophilic disposition.


Assuntos
Anticorpos Biespecíficos , Anticorpos Monoclonais Humanizados , Hemofilia A , Hemostáticos , Trombofilia , Humanos , Fator VIII , Trombina/metabolismo , Hemostasia , Hemofilia A/tratamento farmacológico , Anticoagulantes/uso terapêutico , Trombofilia/tratamento farmacológico , Antitrombinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA