Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Antiviral Res ; 223: 105821, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272318

RESUMO

Although antimicrobial peptides have been shown to inactivate viruses through disruption of their viral envelopes, clinical use of such peptides has been hampered by a number of factors, especially their enzymatically unstable structures. To overcome the shortcomings of antimicrobial peptides, peptoids (sequence-specific N-substituted glycine oligomers) mimicking antimicrobial peptides have been developed. We aimed to demonstrate the antiviral effects of antimicrobial peptoids against hepatitis B virus (HBV) in cell culture. The anti-HBV activity of antimicrobial peptoids was screened and evaluated in an infection system involving the HBV reporter virus and HepG2.2.15-derived HBV. By screening with the HBV reporter virus infection system, three (TM1, TM4, and TM19) of 12 peptoids were identified as reducing the infectivity of HBV, though they did not alter the production levels of HBs antigen in cell culture. These peptoids were not cytotoxic at the evaluated concentrations. Among these peptoids, TM19 was confirmed to reduce HBV infection most potently in a HepG2.2.15-derived HBV infection system that closely demonstrates authentic HBV infection. In cell culture, the most effective administration of TM19 was virus treatment at the infection step, but the reduction in HBV infectivity by pre-treatment or post-treatment of cells with TM19 was minimal. The disrupting effect of TM19 targeting infectious viral particles was clarified in iodixanol density gradient analysis. In conclusion, the peptoid TM19 was identified as a potent inhibitor of HBV. This peptoid prevents HBV infection by disrupting viral particles and is a candidate for a new class of anti-HBV reagents.


Assuntos
Anti-Infecciosos , Hepatite B , Peptoides , Humanos , Vírus da Hepatite B , Peptoides/farmacologia , Peptoides/química , Hepatite B/tratamento farmacológico , Técnicas de Cultura de Células , Antivirais/farmacologia , Peptídeos Antimicrobianos
2.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768585

RESUMO

N6-methyladenosine (m6A) is a post-transcriptional modification of RNA involved in transcript transport, degradation, translation, and splicing. We found that HBV RNA is modified by m6A predominantly in the coding region of HBx. The mutagenesis of methylation sites reduced the HBV mRNA and HBs protein levels. The suppression of m6A by an inhibitor or knockdown in primary hepatocytes decreased the viral RNA and HBs protein levels in the medium. These results suggest that the m6A modification of HBV RNA is needed for the efficient replication of HBV in hepatocytes.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Transativadores/genética , Transativadores/metabolismo , Replicação Viral/genética , RNA Viral/genética , RNA Viral/metabolismo
3.
Virus Res ; 323: 199014, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36511290

RESUMO

Hepatitis B virus (HBV) infection is a major public health problem. The sodium taurocholate cotransporting polypeptide (NTCP) has been identified as an essential HBV receptor. Human hepatocytes are infected with HBV via binding between the preS1 region of the HBV large envelope protein and the NTCP. However, the role of preS2 in HBV entry is not well understood. In this study, we induced anti-preS2 serum in mice by DNA immunization, and showed that the resulting antiserum neutralized HBV infectivity. Competition assays using overlapping peptides suggested that the neutralizing epitope is located in the N-terminal region of preS2. In addition, monoclonal antibodies targeting the N-terminal region of preS2 neutralized HBV infectivity, indicating that these domains are critical epitopes for viral neutralization. These findings provide new insights into the HBV entry machinery while suggesting a novel modality for the prevention and treatment of HBV infection.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Camundongos , Animais , Vírus da Hepatite B/genética , Epitopos , Antígenos de Superfície da Hepatite B/genética , Proteínas do Envelope Viral , Internalização do Vírus
4.
Gene ; 853: 147068, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36427676

RESUMO

Hepatitis B virus (HBV) infection is one of the most serious global health problems. Our previous data using an in vitro assay revealed that miR-6126 suppressed the extracellular HBs antigen level, suggesting that miR-6126 had potential to suppress viral activity of HBV. In the current study, we aimed to clarify whether miR-6126 downregulated the expression level of sodium taurocholate cotransporting polypeptide (NTCP), a host cell receptor required for HBV entry. In brief, HepG2-NTCP cells were utilized to evaluate the expression level of NTCP and the PreS1 attachment to NTCP after transfection with miR-6126. The protein expression level of NTCP was evaluated using Western blot analysis and immunostaining. In addition to HepG2-NTCP cells, PXB cells were also utilized to validate inhibitory effect of miR-6126 on PreS1 attachment. The HBs antigen level in the culture supernatant was measured to evaluate reduction of HBV entry into hepatocytes. The stability of NTCP mRNA was evaluated to ascertain the cause of the downregulation of NTCP mRNA. The expression profile of messenger RNAs was evaluated using next-generation sequencing to search for direct targets of miR-6126. Consequently, transfection of miR-6126 decreased the NTCP expression level in HepG2-NTCP cells. Attachment of the PreS1 probe on the cell surface decreased in HepG2-NTCP cells and PXB cells, primary human hepatocytes. HBs antigen level in the culture supernatant also declined in PXB cells. Stability of NTCP mRNA was reduced by miR-6126 transfection in HepG2 cells. In conclusion, miR-6126 downregulated the expression of NTCP mRNA, which contributed to the inhibition of HBV entry into hepatocytes exerted by miR-6126.


Assuntos
Hepatite B , MicroRNAs , Simportadores , Humanos , Hepatócitos/metabolismo , Vírus da Hepatite B/genética , Hepatite B/genética , Células Hep G2 , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/genética , Simportadores/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Interferons/farmacologia , Polietilenoglicóis/farmacologia
5.
Nat Commun ; 13(1): 5207, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064848

RESUMO

Although the current hepatitis B (HB) vaccine comprising small-HBs antigen (Ag) is potent and safe, attenuated prophylaxis against hepatitis B virus (HBV) with vaccine-escape mutations (VEMs) has been reported. We investigate an HB vaccine consisting of large-HBsAg that overcomes the shortcomings of the current HB vaccine. Yeast-derived large-HBsAg is immunized into rhesus macaques, and the neutralizing activities of the induced antibodies are compared with those of the current HB vaccine. Although the antibodies induced by the current HB vaccine cannot prevent HBV infection with VEMs, the large-HBsAg vaccine-induced antibodies neutralize those infections. The HBV genotypes that exhibited attenuated neutralization via these vaccines are different. Here, we show that the HB vaccine consisting of large-HBsAg is useful to compensate for the shortcomings of the current HB vaccine. The combined use of these HB vaccines may induce antibodies that can neutralize HBV strains with VEMs or multiple HBV genotypes.


Assuntos
Vacinas contra Hepatite B , Hepatite B , Animais , Hepatite B/prevenção & controle , Anticorpos Anti-Hepatite B , Antígenos de Superfície da Hepatite B/genética , Vacinas contra Hepatite B/uso terapêutico , Vírus da Hepatite B/genética , Macaca mulatta , Mutação
6.
mBio ; 13(4): e0097122, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35856559

RESUMO

Patients with severe coronavirus disease 2019 tend to have high levels of proinflammatory cytokines, which eventually lead to cytokine storm and the development of acute respiratory distress syndrome. However, the detailed molecular mechanisms of proinflammatory cytokine production remain unknown. Here, we screened severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genes and found that nonstructural protein 6 (NSP6) and open reading frame 7a (ORF7a) activated the NF-κB pathway. NSP6 and ORF7a interacted with transforming growth factor ß-activated kinase 1 (TAK1), and knockout (KO) of TAK1 or NF-κB essential modulator (NEMO) abolished NF-κB activation by NSP6 and ORF7a. Interestingly, K61 of NSP6 was conjugated to K63-linked polyubiquitin chains by the E3 ubiquitin ligase tripartite motif-containing 13, and this polyubiquitination of NSP6 appeared crucial for recruitment of NEMO to the NSP6-TAK1 complex and NF-κB activation. On the other hand, ring finger protein 121 (RNF121) was required for the polyubiquitination of ORF7a. Knockdown of RNF121 significantly decreased ORF7a binding of TAK1 and NEMO, resulting in the suppression of NF-κB activation. Taken together, our results provide novel molecular insights into the pathogenesis of SARS-CoV-2 and the host immune response to SARS-CoV-2 infection. IMPORTANCE The detailed molecular basis of the induction of proinflammatory cytokines and chemokines by SARS-CoV-2 is unclear, although such induction is clearly related to the severity of COVID-19. Here, we show that SARS-CoV-2 NSP6 and ORF7a lead to NF-κB activation through associations with TAK1. K63-linked polyubiquitination of NSP6 and ORF7a by TRIM13 and RNF121, respectively, appears essential for NF-κB activation. These results suggest that inhibition of the NSP6 and ORF7a gene products may reduce the severity of COVID-19 symptoms by decreasing proinflammatory cytokine levels.


Assuntos
COVID-19 , NF-kappa B , Citocinas/metabolismo , Humanos , NF-kappa B/metabolismo , Fases de Leitura Aberta , SARS-CoV-2/genética , Ubiquitinação
7.
PLoS Pathog ; 18(3): e1009983, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35312737

RESUMO

Intracellular transport via microtubule-based dynein and kinesin family motors plays a key role in viral reproduction and transmission. We show here that Kinesin Family Member 4 (KIF4) plays an important role in HBV/HDV infection. We intended to explore host factors impacting the HBV life cycle that can be therapeutically addressed using siRNA library transfection and HBV/NLuc (HBV/NL) reporter virus infection in HepG2-hNTCP cells. KIF4 silencing resulted in a 3-fold reduction in luciferase activity following HBV/NL infection. KIF4 knockdown suppressed both HBV and HDV infection. Transient KIF4 depletion reduced surface and raised intracellular NTCP (HBV/HDV entry receptor) levels, according to both cellular fractionation and immunofluorescence analysis (IF). Overexpression of wild-type KIF4 but not ATPase-null KIF4 mutant regained the surface localization of NTCP and significantly restored HBV permissiveness in these cells. IF revealed KIF4 and NTCP colocalization across microtubule filaments, and a co-immunoprecipitation study revealed that KIF4 interacts with NTCP. KIF4 expression is regulated by FOXM1. Interestingly, we discovered that RXR agonists (Bexarotene, and Alitretinoin) down-regulated KIF4 expression via FOXM1-mediated suppression, resulting in a substantial decrease in HBV-Pre-S1 protein attachment to HepG2-hNTCP cell surface and subsequent HBV infection in both HepG2-hNTCP and primary human hepatocyte (PXB) (Bexarotene, IC50 1.89 ± 0.98 µM) cultures. Overall, our findings show that human KIF4 is a critical regulator of NTCP surface transport and localization, which is required for NTCP to function as a receptor for HBV/HDV entry. Furthermore, small molecules that suppress or alleviate KIF4 expression would be potential antiviral candidates targeting HBV and HDV entry.


Assuntos
Vírus da Hepatite B , Vírus Delta da Hepatite , Cinesinas , Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Internalização do Vírus , Família , Células Hep G2 , Vírus da Hepatite B/fisiologia , Vírus Delta da Hepatite/fisiologia , Humanos , Cinesinas/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Receptores X de Retinoides/agonistas , Simportadores/genética , Simportadores/metabolismo
8.
Nat Commun ; 13(1): 531, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087074

RESUMO

Autophagy has been linked to a wide range of functions, including a degradative process that defends host cells against pathogens. Although the involvement of autophagy in HBV infection has become apparent, it remains unknown whether selective autophagy plays a critical role in HBV restriction. Here, we report that a member of the galectin family, GAL9, directs the autophagic degradation of HBV HBc. BRET screening revealed that GAL9 interacts with HBc in living cells. Ectopic expression of GAL9 induces the formation of HBc-containing cytoplasmic puncta through interaction with another antiviral factor viperin, which co-localized with the autophagosome marker LC3. Mechanistically, GAL9 associates with HBc via viperin at the cytoplasmic puncta and enhanced the auto-ubiquitination of RNF13, resulting in p62 recruitment to form LC3-positive autophagosomes. Notably, both GAL9 and viperin are type I IFN-stimulated genes that act synergistically for the IFN-dependent proteolysis of HBc in HBV-infected hepatocytes. Collectively, these results reveal a previously undescribed antiviral mechanism against HBV in infected cells and a form of crosstalk between the innate immune system and selective autophagy in viral infection.


Assuntos
Galectinas/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Macroautofagia/efeitos dos fármacos , Proteína Sequestossoma-1/metabolismo , Proteínas do Core Viral/metabolismo , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Galectinas/genética , Galectinas/metabolismo , Expressão Gênica , Células HEK293 , Células Hep G2 , Hepatite B , Vírus da Hepatite B/metabolismo , Humanos , Proteólise , Proteína Sequestossoma-1/genética
9.
J Virol ; 96(5): e0168621, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34985994

RESUMO

Hepatitis B virus (HBV) infects 240 million people worldwide. Current therapy profoundly suppresses HBV replication but requires long-term maintenance therapy. Therefore, there is still a medical need for an efficient HBV cure. HBV enters host cells by binding via the preS1 domain of the viral L protein to the Na+/taurocholate cotransporting polypeptide (NTCP). Thus, NTCP should be a key target for the development of anti-HBV therapeutics. Indeed, myrcludex B, a synthetic form of the myristoylated preS1 peptide, effectively reduces HBV/hepatitis D virus (HDV) infection and has been approved as Hepcludex in Europe for the treatment of patients with chronic HDV infection. We established a monoclonal antibody (MAb), N6HB426-20, that recognizes the extracellular domain of human NTCP and blocks HBV entry in vitro into human liver cells but has much less of an inhibitory effect on bile acid uptake. In vivo, administration of the N6HB426-20 MAb prevented HBV viremia for an extended period of time after HBV inoculation in a mouse model system without strongly inhibiting bile acid absorption. Among the extracellular loops (ECLs) of NTCP, regions of amino acids (aa) 84 to 87 in ECL1 and aa 157 to 165 near ECL2 of transmembrane domain 5 are critically important for HBV/HDV infection. Epitope mapping and the three-dimensional (3D) model of the NTCP structure suggested that the N6HB426-20 MAb may recognize aa 276/277 at the tip of ECL4 and interfere with binding of HBV to the region from aa 84 to 87. In summary, we identified an in vivo neutralizing NTCP-targeting antibody capable of preventing HBV infection. Further improvements in efficacy of this drug will pave the way for its clinical applications. IMPORTANCE A number of entry inhibitors are being developed to enhance the treatment of HBV patients with oral nucleoside/nucleotide analogues (NA). To amplify the effectiveness of NA therapy, several efforts have been made to develop therapeutic MAbs with neutralizing activity against HBs antigens. However, the neutralizing effect of these MAbs may be muted by a large excess of HBsAg-positive noninfectious particles in the blood of infected patients. The advantage of NTCP-targeted HBV entry inhibitors is that they remain effective regardless of viral genotype, viral mutations, and the presence of subviral particles. Although N6HB426-20 requires a higher dose than myrcludex to obtain equivalent suppression of HBV in a model mouse system, it maintained the inhibitory effect for a long time postadministration in proportion to the half-life of an IgG MAb. We believe that further improvements will make this antibody a promising treatment option for patients with chronic hepatitis B.


Assuntos
Vírus da Hepatite B , Hepatite B , Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Internalização do Vírus , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Células Hep G2 , Hepatite B/tratamento farmacológico , Hepatite B/prevenção & controle , Hepatite B/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Hepatócitos , Humanos , Camundongos , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Proteínas Virais/metabolismo , Internalização do Vírus/efeitos dos fármacos
10.
J Gen Virol ; 102(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34661519

RESUMO

Ubiquitin and ubiquitin-like protein modification play important roles in modulating the functions of viral proteins in many viruses. Here we demonstrate that hepatitis B virus (HBV) X protein (HBx) is modified by ISG15, which is a type I IFN-inducible, ubiquitin-like protein; this modification is called ISGylation. Immunoblot analyses revealed that HBx proteins derived from four different HBV genotypes accepted ISGylation in cultured cells. Site-directed mutagenesis revealed that three lysine residues (K91, K95 and K140) on the HBx protein, which are well conserved among all the HBV genotypes, are involved in acceptance of ISGylation. Using expression plasmids encoding three known E3 ligases involved in the ISGylation to different substrates, we found that HERC5 functions as an E3 ligase for HBx-ISGylation. Treatment with type I and type III IFNs resulted in the limited suppression of HBV replication in Hep38.7-Tet cells. When cells were treated with IFN-α, silencing of ISG15 resulted in a marked reduction of HBV replication in Hep38.7-Tet cells, suggesting a role of ISG15 in the resistance to IFN-α. In contrast, the silencing of USP18 (an ISG15 de-conjugating enzyme) increased the HBV replication in Hep38.7-Tet cells. Taken together, these results suggest that the HERC5-mediated ISGylation of HBx protein confers pro-viral functions on HBV replication and participates in the resistance to IFN-α-mediated antiviral activity.


Assuntos
Citocinas/metabolismo , Vírus da Hepatite B/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transativadores/metabolismo , Ubiquitinas/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral , Linhagem Celular , Farmacorresistência Viral , Vírus da Hepatite B/genética , Humanos , Interferon-alfa/farmacologia , Interferon beta/farmacologia , Interferons/farmacologia , Transativadores/química , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais Reguladoras e Acessórias/química , Interferon lambda
11.
Genes (Basel) ; 12(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34680966

RESUMO

The renin-angiotensin-aldosterone system (RAAS) appears to play an important role in SARS-CoV-2 infection. Polymorphisms within the genes that control this enzymatic system are candidates for elucidating the pathogenesis of COVID-19, since COVID-19 is not only a pulmonary disease but also affects many organs and systems throughout the body in multiple ways. Most striking is the fact that ACE2, one of the major components of the RAAS, is a prerequisite for SARS-COV-2 infection. Recently, we and other groups reported an association between a polymorphism of the ACE1 gene (a homolog of ACE2) and the phenotypic expression of COVID-19, particularly in its severity. The ethnic difference in ACE1 insertion (I)/deletion (D) polymorphism seems to explain the apparent difference in mortality between the West and East Asia. The purpose of this review was to further evaluate the evidence linking ACE1 polymorphisms to COVID-19. We searched the Medline database (2019-2021) for reference citations of relevant articles and selected studies on the clinical outcome of COVID-19 related to ACE1 I/D polymorphism. Although the numbers of patients are not large enough yet, most available evidence supports the notion that the DD genotype adversely influences COVID-19 symptoms. Surprisingly, small studies conducted in several countries yielded opposite results, suggesting that the ACE1 II genotype is a risk factor. This contradictory result may be the case in certain geographic areas, especially in subgroups of patients. It may also be due to interactions with other genes or to yet unexplained biochemical mechanisms. According to our hypothesis, such candidates are genes that are functionally involved in the pathophysiology of COVID-19, can act in concert with the ACE1 DD genotype, and that show differences in their frequency between the West and East Asia. For this, we conducted research focusing on Alu-related genes. The current study on the ACE1 genotype will provide potentially new clues to the pathogenesis, treatment, and diagnosis of SARS-CoV-2 infections.


Assuntos
COVID-19 , Regulação Viral da Expressão Gênica , Genótipo , Mutação INDEL , Peptidil Dipeptidase A , Polimorfismo Genético , SARS-CoV-2/metabolismo , COVID-19/genética , COVID-19/metabolismo , Humanos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Fatores de Risco
12.
Biochem Biophys Res Commun ; 575: 36-41, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34455219

RESUMO

Air spaces and material surfaces in a pathogen-contaminated environment can often be a source of infection to humans, and disinfection has become a common intervention focused on reducing the contamination levels. In this study, we examined the efficacy of SAIW, a unique electrolyzed water with chlorine-free, high pH, high concentration of dissolved hydrogen, and low oxygen reduction potential, for the inactivation of several viruses and bacteria. Infectivity assays revealed that initial viral titers of enveloped and non-enveloped viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus, herpes simplex virus type 1, human coronavirus, feline calicivirus, and canine parvovirus, were reduced by 2.9- to 5.5-log10 within 30 s of SAIW exposure. Similarly, the culturability of three Gram-negative bacteria (Escherichia coli, Salmonella, and Legionella) dropped down by 1.9- to 4.9-log10 within 30 s of SAIW treatment. Mechanistically, treatment with SAIW was found to significantly decrease the binding and subsequent entry efficiencies of SARS-CoV-2 on Vero cells. Finally, we showed that this chlorine-free electrolytic ion water had no acute inhalation toxicity in mice, demonstrating that SAIW holds promise for a safer antiviral and antibacterial disinfectant.


Assuntos
Anti-Infecciosos/farmacologia , Desinfetantes/farmacologia , Desinfecção/métodos , SARS-CoV-2/efeitos dos fármacos , Inativação de Vírus/efeitos dos fármacos , Água/farmacologia , Animais , Calicivirus Felino/efeitos dos fármacos , Calicivirus Felino/crescimento & desenvolvimento , Chlorocebus aethiops , Contagem de Colônia Microbiana , Eletrólise , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/crescimento & desenvolvimento , Humanos , Concentração de Íons de Hidrogênio , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/crescimento & desenvolvimento , Legionella/efeitos dos fármacos , Legionella/crescimento & desenvolvimento , Camundongos , Parvovirus Canino/efeitos dos fármacos , Parvovirus Canino/crescimento & desenvolvimento , SARS-CoV-2/crescimento & desenvolvimento , Salmonella/efeitos dos fármacos , Salmonella/crescimento & desenvolvimento , Pele/efeitos dos fármacos , Células Vero , Carga Viral
13.
Cell Mol Gastroenterol Hepatol ; 12(5): 1583-1598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34352407

RESUMO

BACKGROUND & AIMS: To provide an adequate treatment strategy for chronic hepatitis B, it is essential to know which patients are expected to have a good prognosis and which patients do not require therapeutic intervention. Previously, we identified the substitution of isoleucine to leucine at amino acid 97 (I97L) in the hepatitis B core region as a key predictor among patients with stable hepatitis. In this study, we attempted to identify the point at which I97L affects the hepatitis B virus (HBV) life cycle and to elucidate the underlying mechanisms governing the stabilization of hepatitis. METHODS: To confirm the clinical features of I97L, we used a cohort of hepatitis B e antigen-negative patients with chronic hepatitis B infected with HBV-I97 wild-type (wt) or HBV-I97L. The effects of I97L on viral characteristics were evaluated by in vitro HBV production and infection systems with the HBV reporter virus and cell culture-generated HBV. RESULTS: The ratios of reduction in hepatitis B surface antigen and HBV DNA were higher in patients with HBV-I97L than in those with HBV-I97wt. HBV-I97L exhibited lower infectivity than HBV-I97wt in both infection systems with reporter HBV and cell culture-generated HBV. HBV-I97L virions exhibiting low infectivity primarily contained a single-stranded HBV genome. The lower efficiency of cccDNA synthesis was demonstrated after infection of HBV-I97L or transfection of the molecular clone of HBV-I97L. CONCLUSIONS: The I97L substitution reduces the level of cccDNA through the generation of immature virions with single-stranded genomes. This I97L-associated low efficiency of cccDNA synthesis may be involved in the stabilization of hepatitis.


Assuntos
Substituição de Aminoácidos , Vírus da Hepatite B/genética , Hepatite B/virologia , Polimorfismo Genético , Proteínas Virais/genética , Adulto , Biomarcadores , Técnicas de Cultura de Células , DNA Viral , Progressão da Doença , Feminino , Regulação Viral da Expressão Gênica , Genes Reporter , Engenharia Genética , Hepatite B/diagnóstico , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Proteínas Virais/química , Replicação Viral
14.
Int J Mol Sci ; 22(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066804

RESUMO

The elderly and patients with several comorbidities experience more severe cases of coronavirus disease 2019 (COVID-19) than healthy patients without underlying medical conditions. However, it is unclear why these people are prone to developing alveolar pneumonia, rapid exacerbations, and death. Therefore, we hypothesized that people with comorbidities may have a genetic predisposition that makes them more vulnerable to various factors; for example, they are likely to become more severely ill when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To test this hypothesis, we searched the literature extensively. Polymorphisms of genes, such as those that encode angiotensin-converting enzyme 1 (ACE1), have been associated with numerous comorbidities, such as cardiovascular disease, hypertension, diabetes, chronic kidney disease, and obesity, and there are potential mechanisms to explain these associations (e.g., DD-type carriers have greater ACE1 activity, and patients with a genetic alpha-1 anti-trypsin (AAT) deficiency lack control over inflammatory mediators). Since comorbidities are associated with chronic inflammation and are closely related to the renin-angiotensin-aldosterone system (RAAS), these individuals may already have a mild ACE1/ACE2 imbalance before viral infection, which increases their risk for developing severe cases of COVID-19. However, there is still much debate about the association between ACE1 D/I polymorphism and comorbidities. The best explanation for this discrepancy could be that the D allele and DD subtypes are associated with comorbidities, but the DD genotype alone does not have an exceptionally large effect. This is also expected since the ACE1 D/I polymorphism is only an intron marker. We also discuss how polymorphisms of AAT and other genes are involved in comorbidities and the severity of SARS-CoV-2 infection. Presumably, a combination of multiple genes and non-genetic factors is involved in the establishment of comorbidities and aggravation of COVID-19.


Assuntos
COVID-19/genética , Predisposição Genética para Doença , Peptidil Dipeptidase A/genética , Idoso , Alelos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , COVID-19/fisiopatologia , COVID-19/virologia , Comorbidade , Antígenos HLA/genética , Antígenos HLA/metabolismo , Haplótipos , Humanos , Inflamação/genética , Inflamação/metabolismo , Homem de Neandertal/genética , Peptidil Dipeptidase A/metabolismo , Polimorfismo Genético , Fatores de Risco , Índice de Gravidade de Doença
15.
J Virol ; 95(15): e0076721, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980595

RESUMO

Hepatitis B virus (HBV) is a stealth virus that exhibits only minimal induction of the interferon system, which is required for both innate and adaptive immune responses. However, 90% of acutely infected adults can clear the virus, suggesting the presence of additional mechanisms that facilitate viral clearance. Here, we report that Maf bZIP transcription factor F (MafF) promotes host defense against infection with HBV. Using a small interfering RNA (siRNA) library and an HBV/NanoLuc (NL) reporter virus, we screened to identify anti-HBV host factors. Our data showed that silencing of MafF led to a 6-fold increase in luciferase activity after HBV/NL infection. Overexpression of MafF reduced HBV core promoter transcriptional activity, which was relieved upon mutation of the putative MafF binding region. Loss of MafF expression through CRISPR/Cas9 editing (in HepG2-hNTCP-C4 cells) or siRNA silencing (in primary hepatocytes [PXB cells]) induced HBV core RNA and HBV pregenomic RNA (pgRNA) levels, respectively, after HBV infection. MafF physically binds to the HBV core promoter and competitively inhibits HNF-4α binding to an overlapping sequence in the HBV enhancer II sequence (EnhII), as seen by chromatin immunoprecipitation (ChIP) analysis. MafF expression was induced by interleukin-1ß (IL-1ß) or tumor necrosis factor alpha (TNF-α) treatment in both HepG2 and PXB cells, in an NF-κB-dependent manner. Consistently, MafF expression levels were significantly enhanced and positively correlated with the levels of these cytokines in patients with chronic HBV infection, especially in the immune clearance phase. IMPORTANCE HBV is a leading cause of chronic liver diseases, infecting about 250 million people worldwide. HBV has developed strategies to escape interferon-dependent innate immune responses. Therefore, the identification of other anti-HBV mechanisms is important for understanding HBV pathogenesis and developing anti-HBV strategies. MafF was shown to suppress transcription from the HBV core promoter, leading to significant suppression of the HBV life cycle. Furthermore, MafF expression was induced in chronic HBV patients and in primary human hepatocytes (PXB cells). This induction correlated with the levels of inflammatory cytokines (IL-1ß and TNF-α). These data suggest that the induction of MafF contributes to the host's antiviral defense by suppressing transcription from selected viral promoters. Our data shed light on a novel role for MafF as an anti-HBV host restriction factor.


Assuntos
Hepatite B Crônica/patologia , Imunidade Inata/imunologia , Fator de Transcrição MafF/metabolismo , Proteínas Nucleares/metabolismo , Transcrição Gênica/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Células Hep G2 , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Humanos , Interleucina-1beta/imunologia , Fator de Transcrição MafF/genética , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Fator de Necrose Tumoral alfa/imunologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-32122916

RESUMO

Hepatitis C virus (HCV) proliferates by hijacking the host lipid machinery. In vitro replication systems revealed many aspects of the virus life cycle; in particular, viral utilization of host lipid metabolism during HCV proliferation. HCV interacts with lipid droplets (LDs) before starting the process of virus capsid formation at the lipid-rich endoplasmic reticulum (ER) membrane compartment. HCV buds into the ER via lipoprotein assembly and secretion. Exchangeable apolipoproteins, represented by apolipoprotein E (apoE), play pivotal roles in enhancing HCV-specific infectivity. HCV virions are likely to interact with other lipoproteins circulating in blood vessels and incorporate apolipoproteins as well as lipids. This review focuses on virus assembly and egress by briefly describing the recent advances in this area.


Assuntos
Hepacivirus/fisiologia , Hepatite C/virologia , Metabolismo dos Lipídeos , Montagem de Vírus , Apolipoproteínas/metabolismo , Hepatite C/metabolismo , Humanos , Lipoproteínas/metabolismo , Vírion/metabolismo
17.
J Gastroenterol Hepatol ; 36(4): 1126-1135, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32839985

RESUMO

BACKGROUND AND AIM: Direct-acting antiviral (DAA) therapies have been proven to be highly effective for the eradication of hepatitis C virus (HCV) without resistance-associated substitutions (RASs). However, even in cases with no detected RASs, treatment sometimes fails, suggestive of the existence of some host-related factors involved in HCV eradication by DAAs. To explore such factors, we analyzed the serum microRNAs (miRNAs) of patients who received DAA treatment. METHODS: The serum miRNA expression levels of 39 patients with chronic HCV infection without any detectable RASs, who achieved sustained virological response with asunaprevir/daclatasvir or grazoprevir/elbasvir therapy, were investigated cyclopedically, using oligonucleotide microarrays. The effects of specific miRNAs on the replication of HCV were measured in the HCV genomic replicon containing Huh-7 hepatoma cells. RESULTS: Along with the disappearance of HCV, the expression quantiles of 16 miRNAs in the asunaprevir/daclatasvir group and 18 miRNAs in the grazoprevir/elbasvir group showed a tendency to increase or decrease. Among these molecules, adjustments for multiple testing yielded a significant differential expression at a false discovery rate of less than 5% for only one molecule, hsa-miR-762. Its expression quantile increased after HCV exclusion in all patients who had achieved sustained virological response. Quantitative polymerase chain reaction analysis validated a significant increase in the serum hsa-miR-762 after disappearance of HCV. On the contrary, hsa-miR-762 was decreased in the relapse and breakthrough of HCV in DAA failures. Transfection of hsa-miR-762 into cultured HCV-infected hepatocytes significantly decreased HCV-RNA replication. CONCLUSION: These data suggest that hsa-miR-762 is one of the host factors participating in HCV exclusion by DAA therapy.


Assuntos
Amidas/administração & dosagem , Antivirais/administração & dosagem , Benzofuranos/administração & dosagem , Carbamatos/administração & dosagem , Ciclopropanos/administração & dosagem , Genótipo , Hepacivirus/genética , Hepatite C Crônica/diagnóstico , Hepatite C Crônica/tratamento farmacológico , Imidazóis/administração & dosagem , Isoquinolinas/administração & dosagem , MicroRNAs/sangue , Pirrolidinas/administração & dosagem , Quinoxalinas/administração & dosagem , Sulfonamidas/administração & dosagem , Valina/análogos & derivados , Biomarcadores/sangue , Erradicação de Doenças , Quimioterapia Combinada , Feminino , Hepatite C Crônica/genética , Hepatite C Crônica/virologia , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Valina/administração & dosagem
18.
Hepatology ; 73(2): 520-532, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32446278

RESUMO

BACKGROUND AND AIMS: An efficient cell-culture system for hepatitis B virus (HBV) is indispensable for research on viral characteristics and antiviral reagents. Currently, for the HBV infection assay in cell culture, viruses derived from HBV genome-integrated cell lines of HepG2.2.15 or HepAD-38 are commonly used. However, these viruses are not suitable for the evaluation of polymorphism-dependent viral characteristics or resistant mutations against antiviral reagents. HBV obtained by the transient transfection of the ordinary HBV molecular clone has limited infection efficiencies in cell culture. APPROACH AND RESULTS: We found that an 11-amino-acid deletion (d11) in the preS1 region enhances the infectivity of cell-culture-generated HBV (HBVcc) to sodium taurocholate cotransporting polypeptide-transduced HepG2 (HepG2/NTCP) cells. Infection of HBVcc derived from a d11-introduced genotype C strain (GTC-d11) was ~10-fold more efficient than infection of wild-type GTC (GTC-wt), and the number of infected cells was comparable between GTC-d11- and HepG2.2.15-derived viruses when inoculated with the same genome equivalents. A time-dependent increase in pregenomic RNA and efficient synthesis of covalently closed circular DNA were detected after infection with the GTC-d11 virus. The involvement of d11 in the HBV large surface protein in the enhanced infectivity was confirmed by an HBV reporter virus and hepatitis D virus infection system. The binding step of the GTC-d11 virus onto the cell surface was responsible for this efficient infection. CONCLUSIONS: This system provides a powerful tool for studying the infection and propagation of HBV in cell culture and also for developing the antiviral strategy against HBV infection.


Assuntos
Técnicas de Cultura de Células/métodos , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/patogenicidade , Hepatite B/virologia , Precursores de Proteínas/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Células Hep G2 , Hepatite B/tratamento farmacológico , Hepatite B/patologia , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Humanos , Precursores de Proteínas/genética
19.
J Virol ; 95(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33298539

RESUMO

Hepatitis B virus (HBV) infection is a major public health problem. Human hepatocytes are infected with HBV via binding between the preS1 region in the large envelope protein of HBV and sodium taurocholate cotransporting polypeptide. Although several monoclonal antibodies (MAbs) that recognize the receptor binding domain in preS1 and neutralize HBV infection have been isolated, details of neutralizing epitopes are not understood. In this study, we generated 13 MAbs targeting the preS1 receptor binding domain from preS1-specific memory B cells derived from DNA immunized mice. The MAbs were classified into three groups according to the epitope regions, designated epitopes I-III. A virus neutralization assay revealed that MAbs recognizing epitopes I and III neutralized HBV infection, suggesting that these domains are critical epitopes for viral neutralization. In addition, a neutralization assay against multiple genotypes of HBV revealed that epitope I is a semi-pangenotypic neutralizing epitope, whereas epitope III is a genotype-specific epitope. We also showed that neutralizing MAbs against preS1 could neutralize HBV bearing vaccine-induced escape mutation. These findings provide insight into novel immunoprophylaxis for the prevention and treatment of HBV infection.IMPORTANCE The HBV preS1 2-47 aa region (preS1/2-47) is essential for virus binding with sodium taurocholate cotransporting polypeptide. Several MAbs targeting preS1/2-47 have been reported to neutralize HBV infection; however, which region in preS1/2-47 contains the critical neutralizing epitope for HBV infection is unclear. Here, we generated several MAbs targeting preS1/2-47 and found that MAbs recognizing the N- or C-terminus of preS1/2-47 remarkably neutralized HBV infection. We further confirmed the neutralizing activity of anti-preS1 MAbs against HBV with vaccine escape mutation. These data clarified the relationship between the antibody epitope and the virus neutralizing activity and also suggested the potential ability of a vaccine antigen containing the preS1 region to overcome the weakness of current HB vaccines comprising the small S protein.

20.
Sci Rep ; 10(1): 14349, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873852

RESUMO

Hepatocytes derived from human iPSCs are useful to study hepatitis B virus (HBV) infection, however infection efficiency is rather poor. In order to improve the efficiency of HBV infection to iPSC-derived hepatocytes, we set a co-culture of hepatocytes with liver non-parenchymal cells and found that liver sinusoidal endothelial cells (LSECs) enhanced HBV infection by secreting epidermal growth factor (EGF). While EGF receptor (EGFR) is known as a co-receptor for HBV, we found that EGF enhanced HBV infection at a low dose of EGF, whereas EGF at a high dose suppressed HBV infection. EGFR is internalized by clathrin-mediated endocytosis (CME) and clathrin-independent endocytosis (CIE) pathways depending on the dose of EGF. At a high dose of EGF, the endocytosed EGFR via CIE is degraded in the lysosome. This study is the first to provide evidence that HBV is endocytosed via CME and CIE pathways at a low and high dose of EGF, respectively. In conclusion, we developed an in vitro system of HBV infection using iPSC-derived liver cells, and show that EGF secreted from LSECs modulates HBV infection in a dose dependent manner.


Assuntos
Células Endoteliais/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Vírus da Hepatite B/metabolismo , Hepatite B/metabolismo , Fígado/citologia , Animais , Clatrina/metabolismo , Técnicas de Cocultura , Endocitose/efeitos dos fármacos , Endocitose/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Técnicas de Silenciamento de Genes , Células Hep G2 , Hepatite B/virologia , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Transfecção , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...