Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 11(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35159566

RESUMO

Pesticides which are diluted and sprayed according to the pre-harvest interval (PHI) are generally decomposed and lost through various factors and pathways, and the leftover pesticides are known as residual pesticides. This study aims to determine the dissipation of residual amounts of dinotefuran, fluazinam, indoxacarb, and thiacloprid in persimmon and the changes in the concentration of various processing products. Pesticide spraying is performed in accordance with the GAP (good agricultue practice) of Korea, and the processed products are manufactured using a conventional method after removing the skin of persimmons. The modified QuEchERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method and an optimized method using LC-MS/MS (liquid chromatography mass spectrometry) is implemented to analyze the residual pesticides. The linearity, recovery, and LOQ (limit of quantitation) are presented to verify the analysis method. The amount of residual pesticides tested decreases significantly in a time-dependent manner, regardless of the minimal dilution effect present due to growth. The residual concentration does not vary significantly during the processing stage despite the removal of the systemic pesticides, dinotefuran and thiacloprid. The residues of non-systemic pesticides, fluazinam and indoxacarb, are typically removed by the peeling removal and processing methods. The reduction factor of dinotefuran, whose residual concentration is increased, is less than 1, and the absolute amount of pesticides is decreased through processing. The results of this study can be used as the scientific basis data to ensure the safety of residual pesticides in processed products in the future.

2.
Sensors (Basel) ; 21(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799808

RESUMO

We implement a peer-to-peer (P2P) energy trading system between prosumers and consumers using a smart contract on Ethereum blockchain. The smart contract resides on a blockchain shared by participants and hence guarantees exact execution of trade and keeps immutable transaction records. It removes high cost and overheads needed against hacking or tampering in traditional server-based P2P energy trade systems. The salient features of our implementation include: 1. Dynamic pricing for automatic balancing of total supply and total demand within a microgrid, 2. prevention of double sale, 3. automatic and autonomous operation, 4. experiment on a testbed (Node.js and web3.js API to access Ethereum Virtual Machine on Raspberry Pis with MATLAB interface), and 5. simulation via personas (virtual consumers and prosumers generated from benchmark). Detailed description of our implementation is provided along with state diagrams and core procedures.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33430085

RESUMO

This study determined residual buprofezin levels in fresh ginseng and evaluated their changes during processing. Supervised field trials were conducted at Yeongju, Geumsan, and Goesan, Korea. Buprofezin 12.5% EC was applied to 5-y ginseng in accordance with the Korean good agriculture practice (GAP). Samples were collected at 0, 7, 14, 21, and 30 d after the final application. On day 14 (GAP-equivalent preharvest date), the ginseng was processed to obtain dried and red ginseng. The average buprofezin concentrations on day 0 were 0.076 (Yeongju), 0.055 (Geumsan), and 0.078 mg kg-1 (Goesan). Residual concentrations increased as ginseng was processed into dried and red ginseng. Residue levels in dried ginseng manufactured by hot air drying were higher than in red ginseng obtained by steaming, hot air, and sunlight drying. However, the absolute amount of pesticides decreased by approximately 20-30% as a result of calculating the reduction factor considering the dry yield and moisture content. Therefore, the residual concentration in processed products may vary depending on the processing method, and it is deemed necessary to consider the processing yield and moisture content when evaluating the safety of residual pesticides in dried processed products.


Assuntos
Panax , Tiadiazinas , Dessecação , República da Coreia
4.
ACS Macro Lett ; 9(4): 600-605, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35648493

RESUMO

We report a nanoscale morphology-regulation strategy of self-assembled double-hydrophilic block copolymers with square planar PtII compounds. The selective coordination of PtII on the chelating blocks of poly(acrylic acid)-b-poly(ethylene glycol) (PAA-b-PEG) induced the self-association of metal-chelated unimers by the known cohesive force of PtII. The block-length variation of PAA with constant PEG led to the shape transition from normal core/shell and crew-cut spheres to anisotropic pearl-string structures. On the other hand, PtII adsorption on PEG blocks by extensive hydrogen bonding can further modify the molecular geometry of metal-chelated unimers by decreasing the volume of hydrophilic segments, eventually leading to the shape transition to vesicular structures. This result was well correlated to the structural constraint of PEG conformation estimated by the quantitative 1H NMR analysis. The vesicles also exhibited the enclosing nature for the fluorescent guest molecules, which demonstrated the promising potential for the encapsulating delivery vehicle.

5.
Langmuir ; 35(19): 6421-6428, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30998363

RESUMO

Cationic metal-mediated self-assembly of double-hydrophilic block copolymers (DHBCs) has been of great interest for the preparation of hybrid nanoparticles for versatile applications. Among many functional transition-metal ions, manganese (MnII) is a highly attractive element due to its paramagnetic property with a high coordination number. However, MnII does not lead to the efficient self-assembly of DHBCs because of the relatively high aqueous solubility of coordinated MnII. This article reports a facile method for direct conjugation of MnII ions inside sterically stabilized polymer assemblies, composed of pyrene-end-modified DHBCs. Nitroxide-mediated radical polymerization was used to prepare the poly(ethylene glycol)- b-poly(acrylate) DHBC precursor, followed by the end-modification with pyrene maleimide via the radical-exchange reaction. Employing the self-associated DHBC as the nanoscale template, the simple addition of MnII enables a large number of polyvalent MnII ions to be immobilized at the chelating blocks of DHBCs, which can be readily monitored by the excimeric fluorescence emission change of the terminal pyrene fluorophore. The resulting MnII-loaded polymeric nanoparticles (MnII-PNPs) possess nanogel-like scaffolds, which allow for efficient water permeation at the MnII-incorporated interior for enhanced magnetic resonance contrasting effect. Additionally, by comparing the coordination properties of MnII and cisplatin, we endeavor to understand the internal structures and the relevant physicochemical features of metal-chelated nanoparticles.

6.
ACS Appl Mater Interfaces ; 10(28): 23617-23629, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29923700

RESUMO

Encapsulation of chemotherapeutic agents inside a nanoscale delivery platform can provide an attractive therapeutic strategy with many pharmaceutical benefits, such as increased plasma solubility, prolonged in vivo circulation, and reduced acute toxicity. Given that the biological activities of polymeric nanoparticles are highly dependent on their colloidal structures, the molecular geometry-regulated programming of self-assembled nanoscale architecture is of great interest for chemical design of an ideal delivery platform. In this report, we demonstrate that the molecular geometry of block-copolymer excipients can govern the level of drug-loading capacity and core hydrophobicity of polymeric nanoparticles, which can eventually control the pH-sensitive drug-release property. Atom-transfer radical polymerization was employed as a controlled synthetic method for the copolymer excipients, which contain the metal-chelating poly(acrylic acid) block linked to either a small mPEG-grafted poly(methacrylate) to generate a bulky brush-like chains or a simple linear mPEG segment. During the coordination of cis-diammineplatinum(II) as an active pharmacophore of cisplatin, aqueous-phase size-exclusion chromatography analyses exhibited highly different self-association kinetic regimes prompted by versatile molecular geometry of copolymer excipients, which further allows us to explore the molecular geometry-colloidal property relationship.


Assuntos
Nanopartículas , Cisplatino , Coloides , Portadores de Fármacos , Liberação Controlada de Fármacos , Micelas , Tamanho da Partícula , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA