Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nano Lett ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557080

RESUMO

Modern semiconductor fabrication is challenged by difficulties in overcoming physical and chemical constraints. A major challenge is the wet etching of dummy gate silicon, which involves the removal of materials inside confined spaces of a few nanometers. These chemical processes are significantly different in the nanoscale and bulk. Previously, electrical double-layer formation, bubble entrapment, poor wettability, and insoluble intermediate precipitation have been proposed. However, the exact suppression mechanisms remain unclear due to the lack of direct observation methods. Herein, we investigate limiting factors for the etching kinetics of silicon with tetramethylammonium hydroxide at the nanoscale by using liquid-phase transmission electron microscopy, three-dimensional electron tomography, and first-principles calculations. We reveal suppressed chemical reactions, unstripping phenomena, and stochastic etching behaviors that have never been observed on a macroscopic scale. We expect that solutions can be suggested from this comprehensive insight into the scale-dependent limiting factors of fabrication.

2.
Adv Sci (Weinh) ; 11(10): e2304702, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145969

RESUMO

The DNA damage response is essential for preserving genome integrity and eliminating damaged cells. Although cellular metabolism plays a central role in cell fate decision between proliferation, survival, or death, the metabolic response to DNA damage remains largely obscure. Here, this work shows that DNA damage induces fatty acid oxidation (FAO), which is required for DNA damage-induced cell death. Mechanistically, FAO induction increases cellular acetyl-CoA levels and promotes N-alpha-acetylation of caspase-2, leading to cell death. Whereas chemotherapy increases FAO related genes through peroxisome proliferator-activated receptor α (PPARα), accelerated hypoxia-inducible factor-1α stabilization by tumor cells in obese mice impedes the upregulation of FAO, which contributes to its chemoresistance. Finally, this work finds that improving FAO by PPARα activation ameliorates obesity-driven chemoresistance and enhances the outcomes of chemotherapy in obese mice. These findings reveal the shift toward FAO induction is an important metabolic response to DNA damage and may provide effective therapeutic strategies for cancer patients with obesity.


Assuntos
Ácidos Graxos , PPAR alfa , Camundongos , Animais , Humanos , Oxirredução , Ácidos Graxos/metabolismo , PPAR alfa/metabolismo , Camundongos Obesos , Resistencia a Medicamentos Antineoplásicos , Obesidade/metabolismo , Morte Celular
3.
bioRxiv ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37786672

RESUMO

Characterization of functional antibody responses to the N-terminal domain (NTD) of the SARS-CoV-2 spike (S) protein has included identification of both potent neutralizing activity and putative enhancement of infection. Fcγ-receptor (FcγR)-independent enhancement of SARS-CoV-2 infection mediated by NTD-binding monoclonal antibodies (mAbs) has been observed in vitro , but the functional significance of these antibodies in vivo is not clear. Here we studied 1,213 S-binding mAbs derived from longitudinal sampling of B-cells collected from eight COVID-19 convalescent patients and identified 72 (5.9%) mAbs that enhanced infection in a VSV-SARS-CoV-2-S-Wuhan pseudovirus (PV) assay. The majority (68%) of these mAbs recognized the NTD, were identified in patients with mild and severe disease, and persisted for at least five months post-infection. Enhancement of PV infection by NTD-binding mAbs was not observed using intestinal (Caco-2) and respiratory (Calu-3) epithelial cells as infection targets and was diminished or lost against SARS-CoV-2 variants of concern (VOC). Proteomic deconvolution of the serum antibody repertoire from two of the convalescent subjects identified, for the first time, NTD-binding, infection-enhancing mAbs among the circulating immunoglobulins directly isolated from serum ( i.e ., functionally secreted antibody). Functional analysis of these mAbs demonstrated robust activation of FcγRIIIa associated with antibody binding to recombinant S proteins. Taken together, these findings suggest functionally active NTD-specific mAbs arise frequently during natural infection and can last as major serum clonotypes during convalescence. These antibodies display diverse attributes that include FcγR activation, and may be selected against by mutations in NTD associated with SARS-CoV-2 VOC.

4.
bioRxiv ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37745524

RESUMO

While our understanding of SARS-CoV-2 pathogenesis and antibody responses following infection and vaccination has improved tremendously since the outbreak in 2019, the sequence identities and relative abundances of the individual constituent antibody molecules in circulation remain understudied. Using Ig-Seq, we proteomically profiled the serological repertoire specific to the whole ectodomain of SARS-CoV-2 prefusion-stabilized spike (S) as well as to the receptor binding domain (RBD) over a 6-month period in four subjects following SARS-CoV-2 infection before SARS-CoV-2 vaccines were available. In each individual, we identified between 59 and 167 unique IgG clonotypes in serum. To our surprise, we discovered that ∼50% of serum IgG specific for RBD did not recognize prefusion-stabilized S (referred to as iso-RBD antibodies), suggesting that a significant fraction of serum IgG targets epitopes on RBD inaccessible on the prefusion-stabilized conformation of S. On the other hand, the abundance of iso-RBD antibodies in nine individuals who received mRNA-based COVID-19 vaccines encoding prefusion-stabilized S was significantly lower (∼8%). We expressed a panel of 12 monoclonal antibodies (mAbs) that were abundantly present in serum from two SARS-CoV-2 infected individuals, and their binding specificities to prefusion-stabilized S and RBD were all in agreement with the binding specificities assigned based on the proteomics data, including 1 iso-RBD mAb which bound to RBD but not to prefusion-stabilized S. 2 of 12 mAbs demonstrated neutralizing activity, while other mAbs were non-neutralizing. 11 of 12 mAbs also bound to S (B.1.351), but only 1 maintained binding to S (B.1.1.529). This particular mAb binding to S (B.1.1.529) 1) represented an antibody lineage that comprised 43% of the individual's total S-reactive serum IgG binding titer 6 months post-infection, 2) bound to the S from a related human coronavirus, HKU1, and 3) had a high somatic hypermutation level (10.9%), suggesting that this antibody lineage likely had been elicited previously by pre-pandemic coronavirus and was re-activated following the SARS-CoV-2 infection. All 12 mAbs demonstrated their ability to engage in Fc-mediated effector function activities. Collectively, our study provides a quantitative overview of the serological repertoire following SARS-CoV-2 infection and the significant contribution of iso-RBD antibodies, demonstrating how vaccination strategies involving prefusion-stabilized S may have reduced the elicitation of iso-RBD serum antibodies which are unlikely to contribute to protection.

5.
Oncogene ; 42(38): 2828-2840, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37591953

RESUMO

Proliferating cells have metabolic dependence on glutamine to fuel anabolic pathways and to refill the mitochondrial carbon pool. The Hippo pathway is essential for coordinating cell survival and growth with nutrient availability, but no molecular connection to glutamine deprivation has been reported. Here, we identify a non-canonical role of YAP, a key effector of the Hippo pathway, in cellular adaptation to perturbation of glutamine metabolism. Whereas YAP is inhibited by nutrient scarcity, enabling cells to restrain proliferation and to maintain energy homeostasis, glutamine shortage induces a rapid YAP dephosphorylation and activation. Upon glutaminolysis inhibition, an increased reactive oxygen species production inhibits LATS kinase via RhoA, leading to YAP dephosphorylation. Activated YAP promotes transcriptional induction of ATF4 to induce the expression of genes involved in amino acid homeostasis, including Sestrin2. We found that YAP-mediated Sestrin2 induction is crucial for cell viability during glutamine deprivation by suppressing mTORC1. Thus, a critical relationship between YAP, ATF4, and mTORC1 is uncovered by our findings. Finally, our data indicate that targeting the Hippo-YAP pathway in combination with glutaminolysis inhibition may provide potential therapeutic approaches to treat tumors.


Assuntos
Fator 4 Ativador da Transcrição , Glutamina , Humanos , Fator 4 Ativador da Transcrição/metabolismo , Sobrevivência Celular , Homeostase , Alvo Mecanístico do Complexo 1 de Rapamicina , Mitocôndrias
6.
Tissue Eng Regen Med ; 20(7): 1109-1117, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37594633

RESUMO

BACKGROUND: Organoids are self-organized three-dimensional culture systems and have the advantages of both in vitro and in vivo experiments. However, each organoid has a different degree of self-organization, and methods such as immunofluorescence staining are required for confirmation. Therefore, we established a system to select organoids with high tissue-specific similarity using deep learning without relying on staining by acquiring bright-field images in a non-destructive manner. METHODS: We identified four biomarkers in RNA extracted from airway organoids. We also predicted biomarker expression by image-based analysis of organoids by convolution neural network, a deep learning method. RESULTS: We predicted airway organoid-specific marker expression from bright-field images of organoids. Organoid differentiation was verified by immunofluorescence staining of the same organoid after predicting biomarker expression in bright-field images. CONCLUSION: Our study demonstrates the potential of imaging and deep learning to distinguish organoids with high human tissue similarity in disease research and drug screening.


Assuntos
Aprendizado Profundo , Humanos , Organoides/metabolismo , Biomarcadores/metabolismo
7.
Cell Death Dis ; 14(7): 435, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454129

RESUMO

DNA repair is a tightly coordinated stress response to DNA damage, which is critical for preserving genome integrity. Accruing evidence suggests that metabolic pathways have been correlated with cellular response to DNA damage. Here, we show that fatty acid oxidation (FAO) is a crucial regulator of DNA double-strand break repair, particularly homologous recombination repair. Mechanistically, FAO contributes to DNA repair by activating poly(ADP-ribose) polymerase 1 (PARP1), an enzyme that detects DNA breaks and promotes DNA repair pathway. Upon DNA damage, FAO facilitates PARP1 acetylation by providing acetyl-CoA, which is required for proper PARP1 activity. Indeed, cells reconstituted with PARP1 acetylation mutants display impaired DNA repair and enhanced sensitivity to DNA damage. Consequently, FAO inhibition reduces PARP1 activity, leading to increased genomic instability and decreased cell viability upon DNA damage. Finally, our data indicate that FAO serves as an important participant of cellular response to DNA damage, supporting DNA repair and genome stability.


Assuntos
Reparo do DNA , DNA , Humanos , Acetilação , DNA/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Ácidos Graxos
8.
Biochem Biophys Res Commun ; 674: 124-132, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37419033

RESUMO

Metastasis is one of the most malignant characteristics of cancer cells, in which metabolic reprogramming is crucial for promoting and sustaining multi-steps of metastasis, including invasion, migration and infiltration. Recently, it has been shown that melanoma cells undergo a metabolic switching toward the upregulation of fatty acid oxidation (FAO) during metastasis. However, the underlying mechanisms by which FAO contributes to metastasis of melanoma cells remain obscure. Here, we report that FAO contributes to melanoma cell migration and invasion by regulating the formation of autophagosomes. Pharmacological or genetic inhibition of FAO impairs migration of melanoma cells, which seems not to be linked to energy production or redox homeostasis. Importantly, we reveal that acetyl-CoA production by FAO contributes to melanoma cell migration through autophagy regulation. Mechanistically, FAO inhibition results in increased autophagosome formation, which suppresses migration and invasion properties of melanoma cells. Our results underscore the crucial role of FAO in melanoma cell migration and support the potential therapeutic relevance of modulating cellular acetyl-CoA levels to inhibit cancer metastasis.


Assuntos
Melanoma , Humanos , Acetilcoenzima A/metabolismo , Melanoma/metabolismo , Oxirredução , Movimento Celular/fisiologia , Autofagia , Ácidos Graxos/metabolismo
9.
Cancer Gene Ther ; 30(6): 878-889, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36807391

RESUMO

Hypoxia, one of the key features of solid tumors, induces autophagy, which acts as an important adaptive mechanism for tumor progression under hypoxic environment. Cellular metabolic reprogramming has been correlated with hypoxia, but the molecular connection to the induction of autophagy remains obscure. Here, we show that suppression of fatty acid oxidation (FAO) by hypoxia induces autophagy in human pancreatic ductal adenocarcinoma (PDAC) cells that is required for their growth and survival. Reduced cellular acetyl-CoA levels caused by FAO inhibition decreases LC3 acetylation, resulting in autophagosome formation. Importantly, PDAC cells are significantly dependent on this metabolic reprogramming, as improving FAO leads to a reduction in hypoxia-induced autophagy and an increase in cell death after chemotherapy. Thus, our study supports that suppression of FAO is an important metabolic response to hypoxia and indicates that targeting this pathway in PDAC may be an effective therapeutic approach.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Hipóxia , Autofagia , Ácidos Graxos/farmacologia , Ácidos Graxos/uso terapêutico , Neoplasias Pancreáticas
10.
mBio ; 13(6): e0254622, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36314798

RESUMO

The first encounter with influenza virus biases later immune responses. This "immune imprinting," formerly from infection within a few years of birth, is in the United States now largely from immunization with a quadrivalent, split vaccine (IIV4 [quadrivalent inactivated influenza vaccine]). In a pilot study of IIV4 imprinting, we used single-cell cultures, next-generation sequencing, and plasma antibody proteomics to characterize the primary antibody responses to influenza in two infants during their first 2 years of seasonal influenza vaccination. One infant, who received only a single vaccination in year 1, contracted an influenza B virus (IBV) infection between the 2 years, allowing us to compare imprinting by infection and vaccination. That infant had a shift in hemagglutinin (HA)-reactive B cell specificity from largely influenza A virus (IAV) specific in year 1 to IBV specific in year 2, both before and after the year 2 vaccination. HA-reactive B cells from the other infant maintained a more evenly distributed specificity. In year 2, class-switched HA-specific B cell IGHV somatic hypermutation (SHM) levels reached the average levels seen in adults. The HA-reactive plasma antibody repertoires of both infants comprised a relatively small number of antibody clonotypes, with one or two very abundant clonotypes. Thus, after the year 2 boost, both infants had overall B cell profiles that resembled those of adult controls. IMPORTANCE Influenza virus is a moving target for the immune system. Variants emerge that escape protection from antibodies elicited by a previously circulating variant ("antigenic drift"). The immune system usually responds to a drifted influenza virus by mutating existing antibodies rather than by producing entirely new ones. Thus, immune memory of the earliest influenza virus exposure has a major influence on later responses to infection or vaccination ("immune imprinting"). In the many studies of influenza immunity in adult subjects, imprinting has been from an early infection, since only in the past 2 decades have infants received influenza immunizations. The work reported in this paper is a pilot study of imprinting by the flu vaccine in two infants, who received the vaccine before experiencing an influenza virus infection. The results suggest that a quadrivalent (four-subtype) vaccine may provide an immune imprint less dominated by one subtype than does a monovalent infection.


Assuntos
Vacinas contra Influenza , Influenza Humana , Orthomyxoviridae , Adulto , Humanos , Lactente , Projetos Piloto , Vírus da Influenza B , Vacinação , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza
11.
Biomol Ther (Seoul) ; 30(3): 274-283, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34663758

RESUMO

KRAS activating mutations, which are present in more than 90% of pancreatic cancers, drive tumor dependency on the RAS/mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT signaling pathways. Therefore, combined targeting of RAS/MAPK and PI3K/AKT signaling pathways may be required for optimal therapeutic effect in pancreatic cancer. However, the therapeutic efficacy of combined MAPK and PI3K/AKT signaling target inhibitors is unsatisfactory in pancreatic cancer treatment, because it is often accompanied by MAPK pathway reactivation by PI3K/AKT inhibitor. Therefore, we developed an inRas37 antibody, which directly targets the intra-cellularly activated GTP-bound form of oncogenic RAS mutation and investigated its synergistic effect in the presence of the PI3K inhibitor BEZ-235 in pancreatic cancer. In this study, inRas37 remarkably increased the drug response of BEZ-235 to pancreatic cancer cells by inhibiting MAPK reactivation. Moreover, the co-treatment synergistically inhibited cell proliferation, migration, and invasion and exhibited synergistic anticancer activity by inhibiting the MAPK and PI3K pathways. The combined administration of inRas37and BEZ-235 significantly inhibited tumor growth in mouse models. Our results demonstrated that inRas37 synergistically increased the antitumor activity of BEZ-235 by inhibiting MAPK reactivation, suggesting that inRas37 and BEZ-235 co-treatment could be a potential treatment approach for pancreatic cancer patients with KRAS mutations.

12.
Materials (Basel) ; 14(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920632

RESUMO

This paper presents the dry etching characteristics of indium tin oxide (ITO)/Ag/ITO multilayered thin film, used as a pixel electrode in a high-resolution active-matrix organic light-emitting diode (AMOLED) device. Dry etching was performed using a combination of H2 and HCl gases in a reactive ion etching system with a remote electron cyclotron resonance (ECR) plasma source, in order to achieve high electron temperature. The effect of the gas ratio (H2/HCl) was closely observed, in order to achieve an optimal etch profile and an effective etch process, while other parameters-such as the radio frequency (RF) power, ECR power, chamber pressure, and temperature-were fixed. The optimized process, with an appropriate gas ratio, constitutes a one-step serial dry etch solution for ITO and Ag multilayered thin films.

13.
Cancer Lett ; 507: 97-111, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33744388

RESUMO

KRAS mutation is associated with the progression and growth of pancreatic cancer and contributes to chemo-resistance, which poses a significant clinical challenge in pancreatic cancer. Here, we developed a RT22-ep59 antibody (Ab) that directly targets the intracellularly activated GTP-bound form of oncogenic KRAS mutants after it is internalized into cytosol by endocytosis through tumor-associated receptor of extracellular epithelial cell adhesion molecule (EpCAM) and investigated its synergistic anticancer effects in the presence of gemcitabine in pancreatic cancer. We first observed that RT22-ep59 specifically recognized tumor-associated EpCAM and reached the cytosol by endosomal escape. In addition, the anticancer effect of RT22-ep59 was observed in the high-EpCAM-expressing pancreatic cancer cells and gemcitabine-resistant pancreatic cancer cells, but it had little effect on the low-EpCAM-expressing pancreatic cancer cells. Additionally, co-treatment with RT22-ep59 and gemcitabine synergistically inhibited cell viability, migration, and invasion in 3D-cultures and exhibited synergistic anticancer activity by inhibiting the RAF/ERK or PI3K/AKT pathways in cells with high-EpCAM expression. In an orthotopic mouse model, combined administration of RT22-ep59 and gemcitabine significantly inhibited tumor growth. Furthermore, the co-treatment suppressed cancer metastasis by blocking EMT signaling in vitro and in vivo. Our results demonstrated that RT22-ep59 synergistically increased the antitumor activity of gemcitabine by inhibiting RAS signaling by specifically targeting KRAS. This indicates that co-treatment with RT22-ep59 and gemcitabine might be considered a potential therapeutic strategy for pancreatic cancer patients harboring KRAS mutation.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Endossomos/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/farmacologia , Sinergismo Farmacológico , Endocitose , Endossomos/genética , Molécula de Adesão da Célula Epitelial/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Invasividade Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
14.
J Exerc Rehabil ; 16(1): 27-35, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32161732

RESUMO

Metabolic syndrome is a collection of health-related conditions that lead to serious health condition. An individual with metabolic syndrome may acquire greater risk for adult-onset complications such as cardiovascular or neurological disorders. The aim of this study was to review and provide the prevalence of metabolic syndrome in Gulf Cooperation Council countries (GCC). Literature searches were performed on PubMed, Google scholar, and Web of Science Core Collection for English-language articles along with national studies. The following search terms were used during search: "prevalence of metabolic syndrome in GCC," "prevalence of metabolic syndrome in middle east," "prevalence of metabolic syndrome in Arab," and "prevalence of metabolic syndrome name of country." Thirty-seven studies were selected for final review out of 132 studies. The weighted pooled prevalence of metabolic syndrome was 27.3% with high heterogeneity (I 2=98.94%; Cochran Q-test P<0.01). The results showed comparatively high and rising rate of metabolic syndrome in the GCC area. Preventative strategy should be considered to reduce the risk of morbidity or mortality related to metabolic syndrome.

15.
Sci Adv ; 6(3): eaay2174, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31998840

RESUMO

Oncogenic RAS mutant (RASMUT) proteins have been considered undruggable via conventional antibody regimens owing to the intracellular location restricting conventional-antibody accessibility. Here, we report a pan-RAS-targeting IgG antibody, inRas37, which directly targets the intracellularly activated form of various RASMUT subtypes after tumor cell-specific internalization into the cytosol to block the interactions with effector proteins, thereby suppressing the downstream signaling. Systemic administration of inRas37 exerted a potent antitumor activity in a subset of RASMUT tumor xenografts in mice, but little efficacy in RASMUT tumors with concurrent downstream PI3K mutations, which were overcome by combination with a PI3K inhibitor. The YAP1 protein was up-regulated as an adaptive resistance-inducing response to inRas37 in RASMUT-dependent colorectal tumors; accordingly, a combination of inRas37 with a YAP1 inhibitor manifested synergistic antitumor effects in vitro and in vivo. Our study offers a promising pan-RAS-targeting antibody and the corresponding therapeutic strategy against RASMUT tumors.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Imunoglobulina G/farmacologia , Mutação , Neoplasias/genética , Proteínas ras/antagonistas & inibidores , Proteínas ras/genética , Animais , Antineoplásicos Imunológicos/farmacocinética , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endocitose , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Humanos , Integrina alfaVbeta3/metabolismo , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Biochem Biophys Res Commun ; 503(4): 2510-2516, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30208519

RESUMO

The main obstacles for practical uses of cytosol-penetrating peptides and proteins include their lack of cell- or tissue-specific targeting and limited cytosolic access owing to the poor endosomal escape ability. We have previously reported a cytosol-penetrating, human IgG1 antibody TMab4-WYW, generally referred to as a cytotransmab (CT), which reaches the cytosol of living cells but nonspecifically because it is endocytosed via a ubiquitously expressed receptor called heparan sulfate proteoglycan (HSPG). Here, our aim was to construct a next-generation CT with tumor cell specificity and improved endosomal escape efficiency. We first substantially reduced the HSPG-binding activity of TMab4-WYW and then fused a cyclic peptide specifically recognizing tumor-associated epithelial cell adhesion molecule (EpCAM) to the N terminus of the light chain for EpCAM-mediated endocytosis, while maintaining the endosomal escape ability in the light chain variable domain (VL), thus generating epCT05. Then, we separately engineered another CT, dubbed epCT65-AAA, with an endosomal escape ability only in the heavy chain variable domain (VH) but not in VL, by functional grafting of the endosomal escape motif of epCT05 VL to the VH. We finally combined the heavy chain of epCT65-AAA and the light chain of epCT05 to create epCT65 with endosomal escape capacity in both the VH and VL. epCT65 effectively localized to the cytosol of only EpCAM-expressing tumor cells and showed approximately twofold improved endosomal escape efficiency, as compared with CTs with endosomal escape motifs in either VH or VL. The full-IgG format CT, epCT65, with a tumor cell-specific cytosol-penetrating activity, has a great potential for practical medical applications, e.g., as a carrier for cytosolic delivery of payloads.


Assuntos
Peptídeos Penetradores de Células/genética , Citosol/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Imunoglobulina G/uso terapêutico , Engenharia de Proteínas/métodos , Linhagem Celular Tumoral , Endossomos/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Células HeLa , Humanos , Imunoglobulina G/genética , Imunoglobulina G/metabolismo
17.
Cancer Lett ; 438: 174-186, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30217561

RESUMO

Pancreatic cancer exhibits an oncogenic KRAS mutation rate of ∼90%. Despite research and drug development efforts focused on KRAS, no targeted therapy has been clinically approved for the treatment of pancreatic cancer with KRAS mutation. Also, the efficacy of gemcitabine is poor due to rapidly acquired resistance. We developed RT11-i antibody, which directly targets the intracellularly activated GTP-bound form of oncogenic RAS mutants. Here, we investigated the combined effects of RT11-i and gemcitabine in vitro and in vivo, and the mechanism involved. RT11-i significantly sensitized pancreatic cancer cells to gemcitabine. Also, the co-treatment synergistically inhibited angiogenesis, migration, and invasion, and showed synergistic anticancer activity by inhibiting the RAF/MEK/ERK or PI3K/AKT pathways. Furthermore, co-treatment inhibited endothelial barrier disruption in tumor vessels, which is a critical step in vascular leakiness of metastasis, and improved vessel structural stability. Importantly, co-treatment significantly suppressed tumor growth in an orthotopic tumor model. Taken together, our findings show that RT11-i synergistically increased the antitumor activity of gemcitabine by inhibiting RAS downstream signaling, which suggests RT11-i and gemcitabine be viewed a potential combination treatment option for pancreatic cancer patients with KRAS mutation.


Assuntos
Anticorpos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Animais , Anticorpos/imunologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Sinergismo Farmacológico , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Gencitabina
18.
J Neurosci Res ; 96(3): 436-448, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28941260

RESUMO

Recombinant adeno-associated viral (AAV)-mediated therapeutic gene transfer to dorsal root ganglia (DRG) is an effective and safe tool for treating chronic pain. However, AAV with various constitutively active promoters leads to transgene expression predominantly to neurons, while glial cells are refractory to AAV transduction in the peripheral nervous system. The present study evaluated whether in vivo satellite glial cell (SGC) transduction in the DRG can be enhanced by the SGC-specific GFAP promoter and by using shH10 and shH19, which are engineered capsid variants with Müller glia-prone transduction. Titer-matched AAV6 (as control), AAVshH10, and AAVshH19, all encoding the EGFP driven by the constitutively active CMV promoter, as well as AAV6-EGFP and AAVshH10-EGFP driven by a GFAP promoter (AAV6-GFAP-EGFP and AAVshH10-GFAP-EGFP), were injected into DRG of adult male rats. Neurotropism of gene expression was determined and compared by immunohistochemistry. Results showed that injection of AAV6- and AAVshH10-GFAP-EGFP induces robust EGFP expression selectively in SGCs, whereas injection of either AAVshH10-CMV-EGFP or AAVshH19-CMV-EGFP into DRG resulted in a similar in vivo transduction profile to AAV6-CMV-EGFP, all showing efficient transduction of sensory neurons without significant transduction of glial cell populations. Coinjection of AAV6-CMV-mCherry and AAV6-GFAP-EGFP induces transgene expression in neurons and SGCs separately. This report, together with our prior studies, demonstrates that the GFAP promoter rather than capsid tropism determines selective gene expression in SGCs following intraganglionic AAV delivery in adult rats. A dual AAV system, one with GFAP promoter and the other with CMV promoter, can efficiently express transgenes selectively in neurons versus SGCs.


Assuntos
Dependovirus/fisiologia , Proteína Glial Fibrilar Ácida/genética , Neuroglia/metabolismo , Transgenes , Animais , Dependovirus/genética , Gânglios/fisiologia , Gânglios/virologia , Gânglios Espinais/fisiologia , Gânglios Espinais/virologia , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Transdução Genética , Tropismo
19.
Nat Commun ; 8: 15090, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28489072

RESUMO

Oncogenic Ras mutants, frequently detected in human cancers, are high-priority anticancer drug targets. However, direct inhibition of oncogenic Ras mutants with small molecules has been extremely challenging. Here we report the development of a human IgG1 format antibody, RT11, which internalizes into the cytosol of living cells and selectively binds to the activated GTP-bound form of various oncogenic Ras mutants to block the interactions with effector proteins, thereby suppressing downstream signalling and exerting anti-proliferative effects in a variety of tumour cells harbouring oncogenic Ras mutants. When systemically administered, an RT11 variant with an additional tumour-associated integrin binding moiety for tumour tissue targeting significantly inhibits the in vivo growth of oncogenic Ras-mutated tumour xenografts in mice, but not wild-type Ras-harbouring tumours. Our results demonstrate the feasibility of developing therapeutic antibodies for direct targeting of cytosolic proteins that are inaccessible using current antibody technology.


Assuntos
Anticorpos Monoclonais/farmacologia , Proliferação de Células/efeitos dos fármacos , Citosol/metabolismo , Imunoglobulina G/farmacologia , Neoplasias/genética , Proteínas ras/genética , Animais , Linhagem Celular Tumoral , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células HL-60 , Células HT29 , Células HeLa , Humanos , Células K562 , Células MCF-7 , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mutação , Células NIH 3T3 , Transplante de Neoplasias , Neoplasias/tratamento farmacológico , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/antagonistas & inibidores , Proteínas ras/metabolismo
20.
Nanotechnology ; 27(47): 475301, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27779112

RESUMO

Novel polyhedral oligomeric silsesquioxane (POSS) resists, which are based on a new photo-crosslinking system via Wolff rearrangement, are developed as ideal replica mold materials for ultraviolet-nanoimprint lithography. These POSS resist materials are synthesized by incorporating diazoketo and hydroxyl groups into the POSS core. The resist materials have exhibited a variety of desirable properties as replica molds, such as high modulus, low shrinkage ratio, high transparency, low surface energy, and resistance to organic solvents. The resultant replica molds exhibit a high resolution patterning capacity. These economic fabrication methods of replica molds with high mechanical durability and good releasing properties are potentially useful for versatile applications in the area of mold-based lithography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...