Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38247771

RESUMO

Multi-layered hydrogels consisting of bi- or tri-layers with different swelling ratios are designed to soft hydrogel actuators by self-folding. The successful use of multi-layered hydrogels in this application greatly relies on the precise design and fabrication of the curvature of self-folding. In general, however, the self-folding often results in an undesired mismatch with the expecting value. To address this issue, this study introduces an interfacial layer formed between each layered hydrogel, and this layer is evaluated to enhance the design and fabrication precision. By considering the interfacial layer, which forms through diffusion, as an additional layer in the multi-layered hydrogel, the degree of mismatch in the self-folding is significantly reduced. Experimental results show that as the thickness of the interfacial layer increases, the multi-layered hydrogel exhibits a 3.5-fold increase in its radius of curvature during the self-folding. In addition, the diffusion layer is crucial for creating robust systems by preventing the separation of layers in the muti-layered hydrogel during actuation, thereby ensuring the integrity of the system in operation. This new strategy for designing multi-layered hydrogels including an interfacial layer would greatly serve to fabricate precise and robust soft hydrogel actuators.

2.
Biotechnol Bioeng ; 118(4): 1612-1623, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421096

RESUMO

The commensal gut bacterium Akkermansia muciniphila is well known as a promising probiotic candidate that improves host health and prevents diseases. However, the biological interaction of A. muciniphila with human gut epithelial cells has rarely been explored for use in biotherapeutics. Here, we developed an in vitro device that simulates the gut epithelium to elucidate the biological effects of living A. muciniphila via multiomics analysis: the Mimetic Intestinal Host-Microbe Interaction Coculture System (MIMICS). We demonstrated that both human intestinal epithelial cells (Caco-2) and the anaerobic bacterium A. muciniphila can remain viable for 12 h after coculture in the MIMICS. The transcriptomic and proteomic changes (cell-cell junctions, immune responses, and mucin secretion) in gut epithelial cells treated with A. muciniphila closely correspond with those reported in previous in vivo studies. In addition, our proteomic and metabolomic results revealed that A. muciniphila activates glucose and lipid metabolism in gut epithelial cells, leading to an increase in ATP production. This study suggests that A. muciniphila improves metabolism for ATP production in gut epithelial cells and that the MIMICS may be an effective general tool for evaluating the effects of anaerobic bacteria on gut epithelial cells.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Akkermansia/crescimento & desenvolvimento , Células CACO-2 , Técnicas de Cocultura , Humanos
3.
Polymers (Basel) ; 12(3)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150989

RESUMO

The hydrogels are widely used in various applications, and their successful uses depend on controlling the mechanical properties. In this study, we present an advanced strategy to develop hydrogel actuator designed to stimulate live cell clusters by self-folding. The hydrogel actuator consisting of two layers with different expansion ratios were fabricated to have various curvatures in self-folding. The expansion ratio of the hydrogel tuned with the molecular weight and concentration of gel-forming polymers, and temperature-sensitive molecules in a controlled manner. As a result, the hydrogel actuator could stimulate live cell clusters by compression and tension repeatedly, in response to temperature. The cell clusters were compressed in the 0.7-fold decreases of the radius of curvature with 1.0 mm in room temperature, as compared to that of 1.4 mm in 37 °C. Interestingly, the vascular endothelial growth factor (VEGF) and insulin-like growth factor-binding protein-2 (IGFBP-2) in MCF-7 tumor cells exposed by mechanical stimulation was expressed more than in those without stimulation. Overall, this new strategy to prepare the active and soft hydrogel actuator would be actively used in tissue engineering, drug delivery, and micro-scale actuators.

4.
Materials (Basel) ; 12(10)2019 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-31109125

RESUMO

Hydrogels incorporated with hydrophobic motifs have received considerable attention to recapitulate the cellular microenvironments, specifically for the bio-mineralization of a 3D matrix. Introduction of hydrophobic molecules into a hydrogel often results in irregular arrangement of the motifs, and further phase separation of hydrophobic domains, but limited efforts have been made to resolve this challenge in developing the hydrophobically-modified hydrogel. Therefore, this study presents an advanced integrative strategy to incorporate hydrophobic domains regularly in a hydrogel using self-assembled domains formed with polymer cross-linkers, building blocks of a hydrogel. Self-assemblies formed by polymer cross-linkers were examined as micro-domains to incorporate hydrophobic motifs in a hydrogel. The self-assembled structures in a pre-gelled solution were confirmed with the fluorescence analysis and the hydrophobicity of a hydrogel could be tuned by incorporating the hydrophobic chains in a controlled manner. Overall, the results of this study would greatly serve to tuning performance of a wide array of hydrophobically-modified hydrogels in drug delivery, cell therapies and tissue engineering.

5.
Sci Rep ; 8(1): 11088, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30038332

RESUMO

Although several biomarkers can be used to distinguish cholangiocarcinoma (CCA) from healthy controls, differentiating the disease from benign biliary disease (BBD) or pancreatic cancer (PC) is a challenge. CCA biomarkers are associated with low specificity or have not been validated in relation to the biological effects of CCA. In this study, we quantitatively analyzed 15 biliary bile acids in CCA (n = 30), BBD (n = 57) and PC (n = 17) patients and discovered glycocholic acid (GCA) and taurochenodeoxycholic acid (TCDCA) as specific CCA biomarkers. Firstly, we showed that the average concentration of total biliary bile acids in CCA patients was quantitatively less than in other patient groups. In addition, the average composition ratio of primary bile acids and conjugated bile acids in CCA patients was the highest in all patient groups. The average composition ratio of GCA (35.6%) in CCA patients was significantly higher than in other patient groups. Conversely, the average composition ratio of TCDCA (13.8%) in CCA patients was significantly lower in all patient groups. To verify the biological effects of GCA and TCDCA, we analyzed the gene expression of bile acid receptors associated with the development of CCA in a CCA cell line. The gene expression of transmembrane G protein coupled receptor (TGR5) and sphingosine 1-phosphate receptor 2 (S1PR2) in CCA cells treated with GCA was 8.6-fold and 3.4-fold higher compared with control (untreated with bile acids), respectively. Gene expression of TGR5 and S1PR2 in TCDCA-treated cells was not significantly different from the control. Taken together, our study identified GCA and TCDCA as phenotype-specific biomarkers for CCA.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Biomarcadores Tumorais/metabolismo , Colangiocarcinoma/metabolismo , Ácido Glicocólico/metabolismo , Ácido Tauroquenodesoxicólico/metabolismo , Neoplasias dos Ductos Biliares/genética , Linhagem Celular Tumoral , Colangiocarcinoma/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...