Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci Technol ; 62(3): 293-305, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32568261

RESUMO

The difference in the breeding programs and population history may have diversely shaped the genomes of Korean native cattle breeds. In the absence of phenotypic data, comparisons of breeds that have been subjected to different selective pressures can aid to identify genomic regions and genes controlling qualitative and complex traits. In this study to decipher genetic variation and identify evidence of divergent selection, 3 Korean cattle breeds were genotyped using the recently developed high-density GeneSeek Genomic Profiler F250 (GGP-F250) array. The three Korean cattle breeds clustered according to their coat color phenotypes and breeding programs. The Heugu breed reliably showed smaller effective population size at all generations considered. Across the autosomal chromosomes, 113 and 83 annotated genes were identified from Hanwoo-Chikso and Hanwoo-Heugu comparisons, respectively of which 16 genes were shared between the two pairwise comparisons. The most important signals of selection were detected on bovine chromosomes 14 (24.39-25.13 Mb) and 18 (13.34-15.07 Mb), containing genes related to body size, and coat color (XKR4, LYN, PLAG1, SDR16C5, TMEM68, CDH15, MC1R, and GALNS). Some of the candidate genes are also associated with meat quality traits (ACSF3, EIF2B1, BANP, APCDD1, and GALM) and harbor quantitative trait locus (QTL) for beef production traits. Further functional analysis revealed that the candidate genes (DBI, ACSF3, HINT2, GBA2, AGPAT5, SCAP, ELP6, APOB, and RBL1) were involved in gene ontology (GO) terms relevant to meat quality including fatty acid oxidation, biosynthesis, and lipid storage. Candidate genes previously known to affect beef production and quality traits could be used in the beef cattle selection strategies.

2.
Asian-Australas J Anim Sci ; 31(3): 327-334, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29103288

RESUMO

OBJECTIVE: The objective of the present study was to validate genes and genomic regions associated with carcass weight using a low-density single nucleotide polymorphism (SNP) Chip in Hanwoo cattle breed. METHODS: Commercial Hanwoo steers (n = 220) were genotyped with 20K GeneSeek genomic profiler BeadChip. After applying the quality control of criteria of a call rate ≥90% and minor allele frequency (MAF) ≥0.01, a total of 15,235 autosomal SNPs were left for genome-wide association (GWA) analysis. The GWA tests were performed using single-locus mixed linear model. Age at slaughter was fitted as fixed effect and sire included as a covariate. The level of genome-wide significance was set at 3.28×10-6 (0.05/15,235), corresponding to Bonferroni correction for 15,235 multiple independent tests. RESULTS: By employing EMMAX approach which is based on a mixed linear model and accounts for population stratification and relatedness, we identified 17 and 16 loci significantly (p<0.001) associated with carcass weight for the additive and dominant models, respectively. The second most significant (p = 0.000049) SNP (ARS-BFGL-NGS-28234) on bovine chromosome 4 (BTA4) at 21 Mb had an allele substitution effect of 43.45 kg. Some of the identified regions on BTA2, 6, 14, 22, and 24 were previously reported to be associated with quantitative trait loci for carcass weight in several beef cattle breeds. CONCLUSION: This is the first genome-wide association study using SNP chips on commercial Hanwoo steers, and some of the loci newly identified in this study may help to better DNA markers that determine increased beef production in commercial Hanwoo cattle. Further studies using a larger sample size will allow confirmation of the candidates identified in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...