Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39184088

RESUMO

Background: Autism spectrum disorder (ASD) has long been recognized as a lifelong condition, but brain aging studies in autistic adults aged >30 years are limited. Free water, a novel brain imaging marker derived from diffusion MRI (dMRI), has shown promise in differentiating typical and pathological aging and monitoring brain degeneration. We aimed to examine free water and free water corrected dMRI measures to assess white and gray matter microstructure and their associations with age in autistic adults. Methods: Forty-three autistic adults ages 30-73 years and 43 age, sex, and IQ matched neurotypical controls participated in this cross-sectional study. We quantified fractional anisotropy (FA), free water, and free water-corrected FA (fwcFA) across 32 transcallosal white matter tracts and 94 gray matter areas in autistic adults and neurotypical controls. Follow-up analyses assessed age effect on dMRI metrics of the whole brain for both groups and the relationship between dMRI metrics and clinical measures of ASD in regions that significantly differentiated autistic adults from controls. Results: We found globally elevated free water in 24 transcallosal tracts in autistic adults. We identified negligible differences in dMRI metrics in gray matter between the two groups. Age-associated FA reductions and free water increases were featured in neurotypical controls; however, this brain aging profile was largely absent in autistic adults. Additionally, greater autism quotient (AQ) total raw score was associated with increased free water in the inferior frontal gyrus pars orbitalis and lateral orbital gyrus in autistic adults. Limitations: All autistic adults were cognitively capable individuals, minimizing the generalizability of the research findings across the spectrum. This study also involved a cross-sectional design, which limited inferences about the longitudinal microstructural changes of white and gray matter in ASD. Conclusions: We identified differential microstructural configurations between white and gray matter in autistic adults and that autistic individuals present more heterogeneous brain aging profiles compared to controls. Our clinical correlation analysis offered new evidence that elevated free water in some localized white matter tracts may critically contribute to autistic traits in ASD. Our findings underscored the importance of quantifying free water in dMRI studies of ASD.

2.
Atten Percept Psychophys ; 86(4): 1248-1258, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684591

RESUMO

Visual short-term memory (VSTM), the ability to store information no longer visible, is essential for human behavior. VSTM limits vary across the population and are correlated with overall cognitive ability. It has been proposed that low-memory individuals are unable to select only relevant items for storage and that these limitations are greatest when memory demands are high. However, it is unknown whether these effects simply reflect task difficulty and whether they impact the quality of memory representations. Here we varied the number of items presented, or set size, to investigate the effect of memory demands on the performance of visual short-term memory across low- and high-memory groups. Group differences emerged as set size exceeded memory limits, even when task difficulty was controlled. In a change-detection task, the low-memory group performed more poorly when set size exceeded their memory limits. We then predicted that low-memory individuals encoding items beyond measured memory limits would result in the degraded fidelity of memory representations. A continuous report task confirmed that low, but not high, memory individuals demonstrated decreased memory fidelity as set size exceeded measured memory limits. The current study demonstrates that items held in VSTM are stored distinctly across groups and task demands. These results link the ability to maintain high quality representations with overall cognitive ability.


Assuntos
Atenção , Memória de Curto Prazo , Reconhecimento Visual de Modelos , Humanos , Adulto Jovem , Masculino , Feminino , Tempo de Reação , Percepção de Cores , Adulto , Orientação , Adolescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA