Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(8): 13294-13304, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472945

RESUMO

Measuring the boundary shape of a deformed liquid microjet is of great importance for using it as an optical resonator for various applications. However, there have been technical challenges due to transparency and uncertainty in the refractive index of the liquid. In this study, we have developed a spectroscopic technique that enables simultaneous determination of the boundary shape and the refractive index of a liquid deformed microjet. A detailed procedure of the technique based on imposition of one-to-one correspondence between experimentally observed resonances and numerically calculated ones are presented along with the measurement results including the refractive index of ethanol between a wavelength of 550 nm and 670 nm.

2.
J Biophotonics ; 13(1): e201900197, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31368257

RESUMO

Delineation of brain tumor margins during surgery is critical to maximize tumor removal while preserving normal brain tissue to obtain optimal clinical outcomes. Although various imaging methods have been developed, they have limitations to be used in clinical practice. We developed a high-speed cellular imaging method by using clinically compatible moxifloxacin and confocal microscopy for sensitive brain tumor detection and delineation. Moxifloxacin is a Food and Drug Administration (FDA) approved antibiotic and was used as a cell labeling agent through topical administration. Its strong fluorescence at short visible excitation wavelengths allowed video-rate cellular imaging. Moxifloxacin-based confocal microscopy (MBCM) was characterized in normal mouse brain specimens and visualized their cytoarchitecture clearly. Then, MBCM was applied to both brain tumor murine models and two malignant human brain tumors of glioblastoma and metastatic cancer. MBCM detected tumors in all the specimens by visualizing dense and irregular cell distributions, and tumor margins were easily delineated based on the cytoarchitecture. An image analysis method was developed for automated detection and delineation. MBCM demonstrated sensitive delineation of brain tumors through cytoarchitecture visualization and would have potentials for human applications, such as a surgery-guiding method for tumor removal.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia Confocal , Moxifloxacina
3.
Phys Rev E ; 97(6-1): 062205, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30011575

RESUMO

The relation between Shannon entropy and avoided crossings is investigated in dielectric microcavities. The Shannon entropy of the probability density for eigenfunctions in an open elliptic billiard as well as a closed quadrupole billiard increases as the center of the avoided crossing is approached. These results are opposite to those of atomic physics for electrons. It is found that the collective Lamb shift of the open quantum system and the symmetry breaking in the closed chaotic quantum system have equivalent effects on the Shannon entropy.

4.
J Biophotonics ; 11(5): e201700270, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29283513

RESUMO

Light-sheet fluorescence microscopy (LSFM) is a powerful tool for biological studies because it allows for optical sectioning of dynamic samples with superior temporal resolution. However, LSFM using 2 orthogonally co-aligned objectives requires a special sample geometry, and volumetric imaging speed is limited due to physical sample translation. This paper describes an oblique scanning 2-photon LSFM (OS-2P-LSFM) that eliminates these limitations by using a single objective near the sample and a refractive scanning-descanning system. This system also provides improved light-sheet confinement against scattering by using a 2-photon Bessel beam. The OS-2P-LSFM hold promise for studying structural, functional and dynamic aspects of living tissues and organisms because it allows for high-speed, translation-free and scattering-robust 3D imaging of large biological specimens.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Imageamento Tridimensional , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Nervo Óptico/diagnóstico por imagem , Pólen/citologia , Espalhamento de Radiação , Fatores de Tempo
5.
Sci Rep ; 6: 38826, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27958315

RESUMO

We report observation of an exceptional point in circular shell ultrasonic cavities in both theory and experiment. In our theoretical analysis we first observe two interacting mode groups, fluid- and solid-based modes, in the acoustic cavities and then show the existence of an EP of these mode groups exhibiting a branch-point topological structure of eigenfrequencies around the EP. We then confirm the mode patterns as well as eigenfrequency structure around the EP in experiments employing the schlieren method, thereby demonstrating utility of ultrasound cavities as experimental platform for investigating non-Hermitian physics.

6.
Biomed Opt Express ; 7(11): 4450-4471, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27895987

RESUMO

Understanding light intensity and temperature increase is of considerable importance in designing or performing in vivo optogenetic experiments. Our study describes the optimal light power at target depth in the rodent brain that would maximize activation of light-gated ion channels while minimizing temperature increase. Monte Carlo (MC) simulations of light delivery were used to provide a guideline for suitable light power at a target depth. In addition, MC simulations with the Pennes bio-heat model using data obtained from measurements with a temperature-measuring cannula having 12.3 mV/°C of thermoelectric sensitivity enabled us to predict tissue heating of 0.116 °C/mW on average at target depth of 563 µm and specifically, a maximum mean plateau temperature increase of 0.25 °C/mW at 100 µm depth for 473 nm light. Our study will help to improve the design and performance of optogenetic experiments while avoiding potential over- and under-illumination.

7.
Phys Med Biol ; 61(6): 2265-82, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26914289

RESUMO

We propose a Monte Carlo (MC) method based on a direct photon flux recording strategy using inhomogeneous, meshed rodent brain atlas. This MC method was inspired by and dedicated to fibre-optics-based optogenetic neural stimulations, thus providing an accurate and direct solution for light intensity distributions in brain regions with different optical properties. Our model was used to estimate the 3D light intensity attenuation for close proximity between an implanted optical fibre source and neural target area for typical optogenetics applications. Interestingly, there are discrepancies with studies using a diffusion-based light intensity prediction model, perhaps due to use of improper light scattering models developed for far-field problems. Our solution was validated by comparison with the gold-standard MC model, and it enabled accurate calculations of internal intensity distributions in an inhomogeneous near light source domain. Thus our strategy can be applied to studying how illuminated light spreads through an inhomogeneous brain area, or for determining the amount of light required for optogenetic manipulation of a specific neural target area.


Assuntos
Mapeamento Encefálico/métodos , Tecnologia de Fibra Óptica/métodos , Optogenética/métodos , Fótons , Animais , Encéfalo/fisiologia , Método de Monte Carlo , Ratos
8.
Sci Rep ; 6: 19805, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26803911

RESUMO

Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η(2) for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr's hydrodynamic theory.

9.
Sci Rep ; 5: 9010, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25759322

RESUMO

Noncircular two-dimensional microcavities support directional output and strong confinement of light, making them suitable for various photonics applications. It is now of primary interest to control the interactions among the cavity modes since novel functionality and enhanced light-matter coupling can be realized through intermode interactions. However, the interaction Hamiltonian induced by cavity deformation is basically unknown, limiting practical utilization of intermode interactions. Here we present the first experimental observation of resonance-assisted tunneling in a deformed two-dimensional microcavity. It is this tunneling mechanism that induces strong inter-mode interactions in mixed phase space as their strength can be directly obtained from a separatrix area in the phase space of intracavity ray dynamics. A selection rule for strong interactions is also found in terms of angular quantum numbers. Our findings, applicable to other physical systems in mixed phase space, make the interaction control more accessible.

10.
Biomed Opt Express ; 6(1): 191-210, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25657886

RESUMO

Measurement of bioluminescent or fluorescent optical reporters with an implanted fiber-optic probe is a promising approach to allow real-time monitoring of molecular and cellular processes in conscious behaving animals. Technically, this approach relies on sensitive light detection due to the relatively limited light signal and inherent light attenuation in scattering tissue. In this paper, we show that specific geometries of lensed fiber probes improve photon collection in turbid tissue such as brain. By employing Monte Carlo simulation and experimental measurement, we demonstrate that hemispherical- and axicon-shaped lensed fibers increase collection efficiency by up to 2-fold when compared with conventional bare fiber. Additionally we provide theoretical evidence that axicon lenses with specific angles improve photon collection over a wider axial range while conserving lateral collection when compared to hemispherical lensed fiber. These findings could guide the development of a minimally-invasive highly sensitive fiber optic-based light signal monitoring technique and may have broad implications such as fiber-based detection used in diffuse optical spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...