Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 330, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570515

RESUMO

Variations in color and texture of histopathology images are caused by differences in staining conditions and imaging devices between hospitals. These biases decrease the robustness of machine learning models exposed to out-of-domain data. To address this issue, we introduce a comprehensive histopathology image dataset named PathoLogy Images of Scanners and Mobile phones (PLISM). The dataset consisted of 46 human tissue types stained using 13 hematoxylin and eosin conditions and captured using 13 imaging devices. Precisely aligned image patches from different domains allowed for an accurate evaluation of color and texture properties in each domain. Variation in PLISM was assessed and found to be significantly diverse across various domains, particularly between whole-slide images and smartphones. Furthermore, we assessed the improvement in domain shift using a convolutional neural network pre-trained on PLISM. PLISM is a valuable resource that facilitates the precise evaluation of domain shifts in digital pathology and makes significant contributions towards the development of robust machine learning models that can effectively address challenges of domain shift in histological image analysis.


Assuntos
Técnicas Histológicas , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Redes Neurais de Computação , Coloração e Rotulagem , Humanos , Amarelo de Eosina-(YS) , Processamento de Imagem Assistida por Computador/métodos , Histologia
2.
Patterns (N Y) ; 4(2): 100688, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36873900

RESUMO

Numerous cancer histopathology specimens have been collected and digitized over the past few decades. A comprehensive evaluation of the distribution of various cells in tumor tissue sections can provide valuable information for understanding cancer. Deep learning is suitable for achieving these goals; however, the collection of extensive, unbiased training data is hindered, thus limiting the production of accurate segmentation models. This study presents SegPath-the largest annotation dataset (>10 times larger than publicly available annotations)-for the segmentation of hematoxylin and eosin (H&E)-stained sections for eight major cell types in cancer tissue. The SegPath generating pipeline used H&E-stained sections that were destained and subsequently immunofluorescence-stained with carefully selected antibodies. We found that SegPath is comparable with, or outperforms, pathologist annotations. Moreover, annotations by pathologists are biased toward typical morphologies. However, the model trained on SegPath can overcome this limitation. Our results provide foundational datasets for machine-learning research in histopathology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA