Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Biochem Pharmacol ; : 116228, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643909

RESUMO

Two recently discovered DRD2 mutations, c.634A > T, p.Ile212Phe and c.1121T > G, p.Met374Arg, cause hyperkinetic movement disorders that have overlapping features but apparently differ in severity. The two known carriers of the Met374Arg variant had early childhood disease onset and more severe motor, cognitive, and neuropsychiatric deficits than any known carriers of the Ile212Phe variant, whose symptoms were first apparent in adolescence. Here, we evaluated if differences in the function of the two variants in cultured cells could explain differing pathogenicity. Both variants were expressed less abundantly than the wild type receptor and exhibited loss of agonist-induced arrestin binding, but differences in expression and arrestin binding between the variants were minor. Basal and agonist-induced activation of heterotrimeric Gi/o/z proteins, however, showed clear differences; agonists were generally more potent at Met374Arg than at the Ile212Phe or wild type variants. Furthermore, all Gα subtypes tested were constitutively activated more by Met374Arg than by Ile212Phe. Met374Arg produced greater constitutive inhibition of cyclic AMP accumulation than Ile212Phe or the wild type D2 receptor. Met374Arg and Ile212Phe were more sensitive to thermal inactivation than the wild type D2 receptor, as reported for other constitutively active receptors, but Ile212Phe was affected more than Met374Arg. Additional pharmacological characterization suggested that the mutations differentially affect the shape of the agonist binding pocket and the potency of dopamine, norepinephrine, and tyramine. Molecular dynamics simulations provided a structural rationale for enhanced constitutive activation and agonist potency. Enhanced constitutive and agonist-induced G protein-mediated signaling likely contributes to the pathogenicity of these novel variants.

2.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-37645775

RESUMO

Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.

3.
EMBO Mol Med ; 15(10): e17367, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37587872

RESUMO

ROS1 is the largest receptor tyrosine kinase in the human genome. Rearrangements of the ROS1 gene result in oncogenic ROS1 kinase fusion proteins that are currently the only validated biomarkers for targeted therapy with ROS1 TKIs in patients. While numerous somatic missense mutations in ROS1 exist in the cancer genome, their impact on catalytic activity and pathogenic potential is unknown. We interrogated the AACR Genie database and identified 34 missense mutations in the ROS1 tyrosine kinase domain for further analysis. Our experiments revealed that these mutations have varying effects on ROS1 kinase function, ranging from complete loss to significantly increased catalytic activity. Notably, Asn and Gly substitutions at Asp2113 in the ROS1 kinase domain were found to be TKI-sensitive oncogenic variants in cell-based model systems. In vivo experiments showed that ROS1 D2113N induced tumor formation that was sensitive to crizotinib and lorlatinib, FDA-approved ROS1-TKIs. Collectively, these findings highlight the tumorigenic potential of specific point mutations within the ROS1 kinase domain and their potential as therapeutic targets with FDA-approved ROS1-TKIs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Mutação de Sentido Incorreto , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , /uso terapêutico
4.
Biochemistry ; 62(11): 1735-1743, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37167569

RESUMO

Genetic tags are transformative tools for investigating the function, localization, and interactions of cellular proteins. Most studies today are reliant on selective labeling of more than one protein to obtain comprehensive information on a protein's behavior in situ. Some proteins can be analyzed by fusion to a protein tag, such as green fluorescent protein, HaloTag, or SNAP-Tag. Other proteins benefit from labeling via small peptide tags, such as the recently reported versatile interacting peptide (VIP) tags. VIP tags enable observations of protein localization and trafficking with bright fluorophores or nanoparticles. Here, we expand the VIP toolkit by presenting two new tags: TinyVIPER and PunyVIPER. These two tags were designed for use with MiniVIPER for labeling up to three distinct proteins at once in cells. Labeling is mediated by the formation of a high-affinity, biocompatible heterodimeric coiled coil. Each tag was validated by fluorescence microscopy, including observation of transferrin receptor 1 trafficking in live cells. We verified that labeling via each tag is highly specific for one- or two-color imaging. Last, the self-sorting tags were used for simultaneous labeling of three protein targets (i.e., TOMM20, histone 2B, and actin) in fixed cells, highlighting their utility for multicolor microscopy. MiniVIPER, TinyVIPER, and PunyVIPER are small and robust peptide tags for selective labeling of cellular proteins.


Assuntos
Corantes Fluorescentes , Peptídeos , Proteínas de Fluorescência Verde/genética , Histonas , Microscopia de Fluorescência/métodos , Coloração e Rotulagem
5.
Nucleic Acids Res ; 51(8): 3934-3949, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36912080

RESUMO

The RNA exosome is an essential 3' to 5' exoribonuclease complex that mediates degradation, processing and quality control of virtually all eukaryotic RNAs. The nucleolar RNA exosome, consisting of a nine-subunit core and a distributive 3' to 5' exonuclease EXOSC10, plays a critical role in processing and degrading nucleolar RNAs, including pre-rRNA. However, how the RNA exosome is regulated in the nucleolus is poorly understood. Here, we report that the nucleolar ubiquitin-specific protease USP36 is a novel regulator of the nucleolar RNA exosome. USP36 binds to the RNA exosome through direct interaction with EXOSC10 in the nucleolus. Interestingly, USP36 does not significantly regulate the levels of EXOSC10 and other tested exosome subunits. Instead, it mediates EXOSC10 SUMOylation at lysine (K) 583. Mutating K583 impaired the binding of EXOSC10 to pre-rRNAs, and the K583R mutant failed to rescue the defects in rRNA processing and cell growth inhibition caused by knockdown of endogenous EXOSC10. Furthermore, EXOSC10 SUMOylation is markedly reduced in cells in response to perturbation of ribosomal biogenesis. Together, these results suggest that USP36 acts as a SUMO ligase to promote EXOSC10 SUMOylation critical for the RNA exosome function in ribosome biogenesis.


Assuntos
Exorribonucleases , Complexo Multienzimático de Ribonucleases do Exossomo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Humanos , Linhagem Celular
6.
Blood ; 139(8): 1208-1221, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34482403

RESUMO

Inherited predisposition to myeloid malignancies is more common than previously appreciated. We analyzed the whole-exome sequencing data of paired leukemia and skin biopsy samples from 391 adult patients from the Beat AML 1.0 consortium. Using the 2015 American College of Medical Genetics and Genomics (ACMG) guidelines for variant interpretation, we curated 1547 unique variants from 228 genes. The pathogenic/likely pathogenic (P/LP) germline variants were identified in 53 acute myeloid leukemia (AML) patients (13.6%) in 34 genes, including 6.39% (25/391) of patients harboring P/LP variants in genes considered clinically actionable (tier 1). 41.5% of the 53 patients with P/LP variants were in genes associated with the DNA damage response. The most frequently mutated genes were CHEK2 (8 patients) and DDX41 (7 patients). Pathogenic germline variants were also found in new candidate genes (DNAH5, DNAH9, DNMT3A, and SUZ12). No strong correlation was found between the germline mutational rate and age of AML onset. Among 49 patients who have a reported history of at least one family member affected with hematological malignancies, 6 patients harbored known P/LP germline variants and the remaining patients had at least one variant of uncertain significance, suggesting a need for further functional validation studies. Using CHEK2 as an example, we show that three-dimensional protein modeling can be one of the effective methodologies to prioritize variants of unknown significance for functional studies. Further, we evaluated an in silico approach that applies ACMG curation in an automated manner using the tool for assessment and (TAPES) prioritization in exome studies, which can minimize manual curation time for variants. Overall, our findings suggest a need to comprehensively understand the predisposition potential of many germline variants in order to enable closer monitoring for disease management and treatment interventions for affected patients and families.


Assuntos
Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Fatores Etários , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Mol Cancer Ther ; 21(2): 336-346, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34907086

RESUMO

ROS1 fusion proteins resulting from chromosomal rearrangements of the ROS1 gene are targetable oncogenic drivers in diverse cancers. Acquired resistance to targeted inhibitors curtails clinical benefit and response durability. Entrectinib, a NTRK/ROS1/ALK targeted tyrosine kinase inhibitor (TKI), was approved for the treatment of ROS1 fusion-positive non-small cell lung cancer (NSCLC) in 2019. In addition, lorlatinib and repotrectinib are actively being explored in the setting of treatment-naïve or crizotinib-resistant ROS1 fusion driven NSCLC. Here, we employed an unbiased forward mutagenesis screen in Ba/F3 CD74-ROS1 and EZR-ROS1 cells to identify resistance liabilities to entrectinib, lorlatinib, and repotrectinib. ROS1F2004C emerged as a recurrent entrectinib resistant mutation and ROS1G2032R was discovered in entrectinib and lorlatinib-resistant clones. Cell-based and modeling data show that entrectinib is a dual type I/II mode inhibitor, and thus liable to both types of resistant mutations. Comprehensive profiling of all clinically relevant kinase domain mutations showed that ROS1L2086F is broadly resistant to all type I inhibitors, but remains sensitive to type II inhibitors. ROS1F2004C/I/V are resistant to type I inhibitors, entrectinib and crizotinib, and type II inhibitor, cabozantinib, but retain sensitivity to the type I macrocyclic inhibitors. Development of new, more selective type II ROS1 inhibitor(s) or potentially cycling type I and type II inhibitors may be one way to expand durability of ROS1-targeted agents.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Simulação de Acoplamento Molecular/métodos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Transfecção
8.
ACS Chem Neurosci ; 12(11): 1873-1884, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33974399

RESUMO

A dopamine D2 receptor mutation was recently identified in a family with a novel hyperkinetic movement disorder. Compared to the wild type D2 receptor, the novel allelic variant D2-I212F activates a Gαi1ß1γ2 heterotrimer with higher potency and modestly enhanced basal activity in human embryonic kidney (HEK) 293 cells and has decreased capacity to recruit arrestin3. We now report that omitting overexpressed G protein-coupled receptor kinase-2 (GRK2) decreased the potency and efficacy of quinpirole for arrestin recruitment. The relative efficacy of quinpirole for arrestin recruitment to D2-I212F compared to D2-WT was considerably lower without overexpressed GRK2 than with added GRK2. D2-I212F exhibited higher basal activation of GαoA than Gαi1 but little or no increase in the potency of quinpirole relative to D2-WT. Other signs of D2-I212F constitutive activity for G protein-mediated signaling, in addition to basal activation of Gαi/o, were enhanced basal inhibition of forskolin-stimulated cyclic AMP accumulation that was reversed by the inverse agonists sulpiride and spiperone and a ∼4-fold increase in the apparent affinity of D2-I212F for quinpirole, determined from competition binding assays. In mouse midbrain slices, inhibition of tonic current by the inverse agonist sulpiride in dopamine neurons expressing D2-I212F was consistent with our hypothesis of enhanced constitutive activity and sensitivity to dopamine relative to D2-WT. Molecular dynamics simulations with D2 receptor models suggested that an ionic lock between the cytoplasmic ends of the third and sixth α-helices that constrains many G protein-coupled receptors in an inactive conformation spontaneously breaks in D2-I212F. Overall, these results confirm that D2-I212F is a constitutively active and signaling-biased D2 receptor mutant and also suggest that the effect of the likely pathogenic variant in a given brain region will depend on the nature of G protein and GRK expression.


Assuntos
Receptores de Dopamina D2 , Transdução de Sinais , Animais , AMP Cíclico , Agonistas de Dopamina/farmacologia , Células HEK293 , Humanos , Camundongos , Quimpirol/farmacologia , Receptores de Dopamina D2/genética
9.
Chem Commun (Camb) ; 57(11): 1344-1347, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33432937

RESUMO

The RNA aptamer Broccoli accepts 2'fluorinated (2'F) pyrimidine nucleotide incorporation without perturbation of structure or fluorescence in the presence of potassium and DFHBI. However, the modification decreases Broccoli's apparent affinity for K+ >30-fold. A chimera of Broccoli RNAs with mixed chemistries displays linear fluorescent gain spanning physiological K+ concentrations, yielding an effective RNA-based fluorescent K+ sensor.


Assuntos
Aptâmeros de Nucleotídeos/química , Potássio/química , Fluocinolona Acetonida , Fluorescência , Corantes Fluorescentes/química , Células HEK293 , Humanos , Conformação de Ácido Nucleico , RNA/química
10.
Commun Biol ; 3(1): 776, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328556

RESUMO

Tyrosine kinase domains dynamically fluctuate between two main structural forms that are referred to as type I (DFG-in) or type II (DFG-out) conformations. Comprehensive data comparing type I and type II inhibitors are currently lacking for NTRK fusion-driven cancers. Here we used a type II NTRK inhibitor, altiratinib, as a model compound to investigate its inhibitory potential for larotrectinib (type I inhibitor)-resistant mutations in NTRK. Our study shows that a subset of larotrectinib-resistant NTRK1 mutations (V573M, F589L and G667C) retains sensitivity to altiratinib, while the NTRK1V573M and xDFG motif NTRK1G667C mutations are highly sensitive to type II inhibitors, including altiratinib, cabozantinib and foretinib. Moreover, molecular modeling suggests that the introduction of a sulfur moiety in the binding pocket, via methionine or cysteine substitutions, specifically renders the mutant kinase hypersensitive to type II inhibitors. Future precision treatment strategies may benefit from selective targeting of these kinase mutants based on our findings.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Neoplasias/genética , Domínios e Motivos de Interação entre Proteínas/genética , Inibidores de Proteínas Quinases/farmacologia , Receptor trkA/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Modelos Moleculares , Conformação Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas de Fusão Oncogênica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Receptor trkA/antagonistas & inibidores , Receptor trkA/química , Receptor trkA/metabolismo , Receptor trkC/química , Receptor trkC/genética , Receptor trkC/metabolismo , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Protein Sci ; 29(9): 1945-1963, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32697405

RESUMO

Age-related lens cataract is the major cause of blindness worldwide. The mechanisms whereby crystallins, the predominant lens proteins, assemble into large aggregates that scatter light within the lens, and cause cataract, are poorly understood. Due to the lack of protein turnover in the lens, crystallins are long-lived. A major crystallin, γS, is heavily modified by deamidation, in particular at surface-exposed N14, N76, and N143 to introduce negative charges. In this present study, deamidated γS was mimicked by mutation with aspartate at these sites and the effect on biophysical properties of γS was assessed via dynamic light scattering, chemical and thermal denaturation, hydrogen-deuterium exchange, and susceptibility to disulfide cross-linking. Compared with wild type γS, a small population of each deamidated mutant aggregated rapidly into large, light-scattering species that contributed significantly to the total scattering. Under partially denaturing conditions in guanidine hydrochloride or elevated temperature, deamidation led to more rapid unfolding and aggregation and increased susceptibility to oxidation. The triple mutant was further destabilized, suggesting that the effects of deamidation were cumulative. Molecular dynamics simulations predicted that deamidation augments the conformational dynamics of γS. We suggest that these perturbations disrupt the native disulfide arrangement of γS and promote the formation of disulfide-linked aggregates. The lens-specific chaperone αA-crystallin was poor at preventing the aggregation of the triple mutant. It is concluded that surface deamidations cause minimal structural disruption individually, but cumulatively they progressively destabilize γS-crystallin leading to unfolding and aggregation, as occurs in aged and cataractous lenses.


Assuntos
Cristalino/química , Agregados Proteicos , Desdobramento de Proteína , gama-Cristalinas/química , Desaminação , Humanos
12.
Chem Commun (Camb) ; 56(17): 2634-2637, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32016232

RESUMO

Though extensively utilized, the fluorescent RNA aptamer Broccoli is poorly characterized with an unknown structure. Spectroscopic and kinetic investigations of tripartite complex formation reveal surprising differences between Broccoli and Spinach aptamers despite extreme sequence conservation. Our studies highlight how subtle sequence variations impart functional consequences of G-quadruplex-cation interactions in RNA.


Assuntos
Aptâmeros de Nucleotídeos/química , Quadruplex G , Sequência de Bases , Dicroísmo Circular , Cinética , Alinhamento de Sequência , Espectrometria de Fluorescência
13.
Clin Cancer Res ; 26(11): 2654-2663, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31911548

RESUMO

PURPOSE: Patterns of resistance to first-line osimertinib are not well-established and have primarily been evaluated using plasma assays, which cannot detect histologic transformation and have differential sensitivity for copy number changes and chromosomal rearrangements. EXPERIMENTAL DESIGN: To characterize mechanisms of resistance to osimertinib, patients with metastatic EGFR-mutant lung cancers who received osimertinib at Memorial Sloan Kettering Cancer Center and had next-generation sequencing performed on tumor tissue before osimertinib initiation and after progression were identified. RESULTS: Among 62 patients who met eligibility criteria, histologic transformation, primarily squamous transformation, was identified in 15% of first-line osimertinib cases and 14% of later-line cases. Nineteen percent (5/27) of patients treated with first-line osimertinib had off-target genetic resistance (2 MET amplification, 1 KRAS mutation, 1 RET fusion, and 1 BRAF fusion) whereas 4% (1/27) had an acquired EGFR mutation (EGFR G724S). Patients with squamous transformation exhibited considerable genomic complexity; acquired PIK3CA mutation, chromosome 3q amplification, and FGF amplification were all seen. Patients with transformation had shorter time on osimertinib and shorter survival compared with patients with on-target resistance. Initial EGFR sensitizing mutation, time on osimertinib treatment, and line of therapy also influenced resistance mechanism that emerged. The compound mutation EGFR S768 + V769L and the mutation MET H1094Y were identified and validated as resistance mechanisms with potential treatment options. CONCLUSIONS: Histologic transformation and other off-target molecular alterations are frequent early emerging resistance mechanisms to osimertinib and are associated with poor clinical outcomes.See related commentary by Piotrowska and Hata, p. 2441.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Acrilamidas , Compostos de Anilina , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
14.
Chem Commun (Camb) ; 55(42): 5882-5885, 2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31037281

RESUMO

Spinach aptamer fluorescence requires formation of a tripartite complex composed of folded RNA, a GFP-like fluorophore, and selective cation coordination. 2'F pyrimidine modified Spinach has retained fluorescence, increased chemical stability, and accelerated cation association via increased G-quadruplex dynamics, thereby reducing readout time and enhancing Spinach utility for aqueous Pb2+ detection.


Assuntos
Aptâmeros de Nucleotídeos/química , Chumbo/química , Ribose/química , Cátions Bivalentes , Dicroísmo Circular , Fluorescência , Corantes Fluorescentes/química , Quadruplex G , Técnicas In Vitro , Conformação de Ácido Nucleico , Espectrometria de Fluorescência
15.
Leukemia ; 32(11): 2374-2387, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29743719

RESUMO

Interleukin-1 receptor-associated kinase 1 (IRAK1), an essential mediator of innate immunity and inflammatory responses, is constitutively active in multiple cancers. We evaluated the role of IRAK1 in acute myeloid leukemia (AML) and assessed the inhibitory activity of multikinase inhibitor pacritinib on IRAK1 in AML. We demonstrated that IRAK1 is overexpressed in AML and provides a survival signal to AML cells. Genetic knockdown of IRAK1 in primary AML samples and xenograft model showed a significant reduction in leukemia burden. Kinase profiling indicated pacritinib has potent inhibitory activity against IRAK1. Computational modeling combined with site-directed mutagenesis demonstrated high-affinity binding of pacritinib to the IRAK1 kinase domain. Pacritinib exposure reduced IRAK1 phosphorylation in AML cells. A higher percentage of primary AML samples showed robust sensitivity to pacritinib, which inhibits FLT3, JAK2, and IRAK1, relative to FLT3 inhibitor quizartinib or JAK1/2 inhibitor ruxolitinib, demonstrating the importance of IRAK1 inhibition. Pacritinib inhibited the growth of AML cells harboring a variety of genetic abnormalities not limited to FLT3 and JAK2. Pacritinib treatment reduced AML progenitors in vitro and the leukemia burden in AML xenograft model. Overall, IRAK1 contributes to the survival of leukemic cells, and the suppression of IRAK1 may be beneficial among heterogeneous AML subtypes.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Benzotiazóis/uso terapêutico , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Criança , Feminino , Humanos , Janus Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Mutação/efeitos dos fármacos , Mutação/genética , Nitrilas , Compostos de Fenilureia/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem , Tirosina Quinase 3 Semelhante a fms/metabolismo
16.
Clin Cancer Res ; 23(21): 6733-6743, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28724664

RESUMO

Purpose: Patients who inherit a pathogenic loss-of-function genetic variant involving one of the four succinate dehydrogenase (SDH) subunit genes have up to an 86% chance of developing one or more cancers by the age of 50. If tumors are identified and removed early in these high-risk patients, they have a higher potential for cure. Unfortunately, many alterations identified in these genes are variants of unknown significance (VUS), confounding the identification of high-risk patients. If we could identify misclassified SDH VUS as benign or pathogenic SDH mutations, we could better select patients for cancer screening procedures and remove tumors at earlier stages.Experimental Design: In this study, we combine data from clinical observations, a functional yeast model, and a computational model to determine the pathogenicity of 22 SDHA VUS. We gathered SDHA VUS from two primary sources: The OHSU Knight Diagnostics Laboratory and the literature. We used a yeast model to identify the functional effect of a VUS on mitochondrial function with a variety of biochemical assays. The computational model was used to visualize variants' effect on protein structure.Results: We were able to draw conclusions on functional effects of variants using our three-prong approach to understanding VUS. We determined that 16 (73%) of the alterations are actually pathogenic, causing loss of SDH function, and six (27%) have no effect upon SDH function.Conclusions: We thus report the reclassification of the majority of the VUS tested as pathogenic, and highlight the need for more thorough functional assessment of inherited SDH variants. Clin Cancer Res; 23(21); 6733-43. ©2017 AACR.


Assuntos
Complexo II de Transporte de Elétrons/genética , Neoplasias/genética , Proteínas de Saccharomyces cerevisiae/genética , Succinato Desidrogenase/genética , Detecção Precoce de Câncer , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Mutação/genética , Neoplasias/enzimologia , Neoplasias/patologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo
17.
J Cell Sci ; 130(11): 1865-1876, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28476937

RESUMO

Vertebrate proteins that fulfill multiple and seemingly disparate functions are increasingly recognized as vital solutions to maintaining homeostasis in the face of the complex cell and tissue physiology of higher metazoans. However, the molecular adaptations that underpin this increased functionality remain elusive. In this Commentary, we review the PACS proteins - which first appeared in lower metazoans as protein traffic modulators and evolved in vertebrates to integrate cytoplasmic protein traffic and interorganellar communication with nuclear gene expression - as examples of protein adaptation 'caught in the act'. Vertebrate PACS-1 and PACS-2 increased their functional density and roles as metabolic switches by acquiring phosphorylation sites and nuclear trafficking signals within disordered regions of the proteins. These findings illustrate one mechanism by which vertebrates accommodate their complex cell physiology with a limited set of proteins. We will also highlight how pathogenic viruses exploit the PACS sorting pathways as well as recent studies on PACS genes with mutations or altered expression that result in diverse diseases. These discoveries suggest that investigation of the evolving PACS protein family provides a rich opportunity for insight into vertebrate cell and organ homeostasis.


Assuntos
Homeostase/genética , Neoplasias/genética , Doenças Neurodegenerativas/genética , Obesidade/genética , Proteínas de Transporte Vesicular/genética , Adaptação Biológica , Animais , Apoptose , Transporte Biológico , Sinalização do Cálcio , Sequência Conservada , Regulação da Expressão Gênica , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Obesidade/metabolismo , Obesidade/patologia , Filogenia , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas de Transporte Vesicular/metabolismo
18.
J Biol Chem ; 290(38): 23214-25, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26229104

RESUMO

The propeptides of proprotein convertases (PCs) regulate activation of cognate protease domains by sensing pH of their organellar compartments as they transit the secretory pathway. Earlier experimental work identified a conserved histidine-encoded pH sensor within the propeptide of the canonical PC, furin. To date, whether protonation of this conserved histidine is solely responsible for PC activation has remained unclear because of the observation that various PC paralogues are activated at different organellar pH values. To ascertain additional determinants of PC activation, we analyzed PC1/3, a paralogue of furin that is activated at a pH of ∼5.4. Using biophysical, biochemical, and cell-based methods, we mimicked the protonation status of various histidines within the propeptide of PC1/3 and examined how such alterations can modulate pH-dependent protease activation. Our results indicate that whereas the conserved histidine plays a crucial role in pH sensing and activation of this protease an additional histidine acts as a "gatekeeper" that fine-tunes the sensitivity of the PC1/3 propeptide to facilitate the release inhibition at higher proton concentrations when compared with furin. Coupled with earlier analyses that highlighted the enrichment of the amino acid histidine within propeptides of secreted eukaryotic proteases, our work elucidates how secreted proteases have evolved to exploit the pH of the secretory pathway by altering the spatial juxtaposition of titratable groups to regulate their activity in a spatiotemporal fashion.


Assuntos
Pró-Proteína Convertase 1/química , Animais , Células COS , Chlorocebus aethiops , Ativação Enzimática , Histidina/química , Humanos , Concentração de Íons de Hidrogênio
19.
Anal Chem ; 87(15): 7909-17, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26110992

RESUMO

Propeptides of proprotein convertases regulate activation of their protease domains by sensing the organellar pH within the secretory pathway. Earlier experimental work highlighted the importance of a conserved histidine residue within the propeptide of a widely studied member, furin. A subsequent evolutionary analysis found an increase in histidine content within propeptides of secreted eukaryotic proteases compared with their prokaryotic orthologs. However, furin activates in the trans-golgi network at a pH of 6.5 while a paralog, proprotein convertase 1/3, activates in secretory vesicles at a pH of 5.5. It is unclear how a conserved histidine can mediate activation at two different pH values. In this manuscript, we measured the pKa values of histidines within the propeptides of furin and proprotein convertase 1/3 using a histidine hydrogen-deuterium exchange mass spectrometry approach. The high density of histidine residues combined with an abundance of basic residues provided challenges for generation of peptide ions with unique histidine residues, which were overcome by employing ETD fragmentation. During this analysis, we found slow hydrogen-deuterium exchange in residues other than histidine at basic pH. Finally, we demonstrate that the pKa of the conserved histidine in proprotein convertase 1/3 is acid-shifted compared with furin and is consistent with its lower pH of activation.


Assuntos
Furina/química , Espectrometria de Massas , Modelos Moleculares , Peptídeos/química , Pró-Proteína Convertase 1/química , Pró-Proteína Convertases/química , Sequência de Aminoácidos , Deutério/química , Histidina/química , Hidrogênio/química , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Peptídeos/genética
20.
Nat Struct Mol Biol ; 21(3): 228-35, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24561504

RESUMO

Eukaryotic secretory proteins cross the endoplasmic reticulum (ER) membrane through a protein-conducting channel contained within the ribosome-Sec61translocon complex (RTC). Using a zinc-finger sequence as a folding switch, we show that cotranslational folding of a secretory passenger inhibits translocation in canine ER microsomes and in human cells. Folding occurs within a cytosolically inaccessible environment, after ER targeting but before initiation of translocation, and it is most effective when the folded domain is 15-54 residues beyond the signal sequence. Under these conditions, substrate is diverted into cytosol at the stage of synthesis in which unfolded substrate enters the ER lumen. Moreover, the translocation block is reversed by passenger unfolding even after cytosol emergence. These studies identify an enclosed compartment within the assembled RTC that allows a short span of nascent chain to reversibly abort translocation in a substrate-specific manner.


Assuntos
Proteínas de Membrana Transportadoras/química , Biossíntese de Proteínas , Ribossomos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Animais , Linhagem Celular , Citosol/metabolismo , Cães , Endopeptidase K/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Cinética , Proteínas de Membrana Transportadoras/metabolismo , Microssomos/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Canais de Translocação SEC , Proteínas de Saccharomyces cerevisiae/metabolismo , Zinco/química , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...