Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(3): e16587, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454741

RESUMO

To comprehensively evaluate the impact of agricultural management practices on soil productivity, it is imperative to conduct a thorough analysis of soil bacterial ecology. Deep-banding nutrient-rich amendments is a soil management practice that aims to improve plant growth and soil structure by addressing the plant-growth constraints posed by dense-clay subsoils. However, the response of bacterial communities to deep-banded amendments has not been thoroughly studied. To address this knowledge gap, we conducted a controlled-environment column experiment to examine the effects of different types of soil amendments (poultry litter, wheat straw + chemical fertiliser and chemical fertiliser alone) on bacterial taxonomic composition in simulated dense-clay subsoils. We evaluated the bacterial taxonomic and ecological group composition in soils beside and below the amendment using 16S rRNA amplicon sequencing and robust statistical methods. Our results indicate that deep-banded amendments alter bacterial communities through direct and indirect mechanisms. All amendments directly facilitated a shift in bacterial communities in the absence of growing wheat. However, a combination of amendments with growing wheat led to a more pronounced bacterial community shift which was distinct from and eclipsed the direct impact of the amendments and plants alone. This indirect mechanism was evidenced to be mediated primarily by plant growth and hypothesised to result from an enhancement in wheat root distribution, density and rhizodeposition changes. Therefore, we propose that subsoil amendments regardless of type facilitated an expansion in the rhizosphere which engineered a substantial plant-mediated bacterial community response within the simulated dense-clay subsoils. Overall, our findings highlight the importance of considering the complex and synergistic interactions between soil physicochemical properties, plant growth and bacterial communities when assessing agricultural management strategies for improving soil and plant productivity.


Assuntos
Microbiota , Microbiota/genética , Argila , Rizosfera , Fertilizantes , RNA Ribossômico 16S/genética , Microbiologia do Solo , Solo/química , Plantas/genética , Bactérias , Triticum/microbiologia
2.
BMC Res Notes ; 16(1): 173, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582810

RESUMO

OBJECTIVE: Hospitals serve as hotspots of antibiotic resistance. Despite several studies exploring antibiotic resistance in hospitals, none have explored the resistance profile of soil bacteria from a hospital precinct. This study examined and compared the antibiogram of the soil isolates from a hospital and its affiliated university precinct, to determine if antibiotic resistant bacteria were present closer to the hospital. RESULTS: 120 soil samples were collected from JSS Hospital and JSS University in Mysore, India across three consecutive seasons (monsoon, winter and summer). 366 isolates were randomly selected from culture. Antibiotic susceptibility testing was performed on 128 isolates of Pseudomonas (n = 73), Acinetobacter (n = 30), Klebsiella species (n = 15) and Escherichia coli (n = 10). Pseudomonas species exhibited the highest antibiotic resistance. Ticarcillin-clavulanic acid, an extended-spectrum carboxypenicillin antibiotic used to treat moderate-to-severe infections, ranked highest amongst the antibiotics to whom these isolates were resistant (n = 51 out of 73, 69.9%). Moreover, 56.8% (n = 29) were from the hospital and 43.1% (n = 22) were from the university precinct, indicating antibiotic resistant bacteria were closer to the hospital setting. This study highlights the effect of antibiotic usage in hospitals and the influence of anthropogenic activities in the hospital on the dissemination of antibiotic resistance into hospital precinct soil.


Assuntos
Antibacterianos , Bactérias , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Hospitais , Klebsiella , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
3.
Access Microbiol ; 5(5): acmi000419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323944

RESUMO

The use of bacterial spores in probiotics over viable loads of bacteria has many advantages, including the durability of spores, which allows spore-based probiotics to effectively traverse the various biochemical barriers present in the gastrointestinal tract. However, the majority of spore-based probiotics developed currently aim to treat adults, and there is a litany of differences between the adult and infant intestinal systems, including the immaturity and low microbial species diversity observed within the intestines of infants. These differences are only further exacerbated in premature infants with necrotizing enterocolitis (NEC) and indicates that what may be appropriate for an adult or even a healthy full-term infant may not be suited for an unhealthy premature infant. Complications from using spore-based probiotics for premature infants with NEC may involve the spores remaining dormant and adhering to the intestinal epithelia, the out-competing of commensal bacteria by spores, and most importantly the innate antibiotic resistance of spores. Also, the ability of Bacillus subtilis to produce spores under duress may result in less B. subtilis perishing within the intestines and releasing membrane branched-chain fatty acids. The isolate B. subtilis BG01-4TM is a proprietary strain developed by Vernx Biotechnology through accumulating mutations within the BG01-4TM genome in a serial batch culture. Strain BG01-4TM was provided as a non-spore-forming B. subtilis , but a positive sporulation status for BG01-4TM was confirmed through in vitro testing and suggested that selection for the sporulation defective genes could occur within an environment that would select against sporulation. The durability of key sporulation genes was ratified in this study, as the ability of BG01-4TM to produce spores was not eliminated by the attempts to select against sporulation genes in BG01-4TM by the epigenetic factors of high glucose and low pH. However, a variation in the genes in isolate BG01-4-8 involved in the regulation of sporulation is believed to have occurred during the mutation selection from the parent strain BG01-4TM. An alteration in selected sporulation regulation genes is expected to have occurred from BG01-4TM to BG01-4-8, with BG01-4-8 producing spores within 24 h, ~48 h quicker than BG01-4TM.

4.
Front Cell Infect Microbiol ; 12: 905841, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846755

RESUMO

Many individuals diagnosed with autism spectrum disorder (ASD) experience gastrointestinal (GI) dysfunction and show microbial dysbiosis. Variation in gut microbial populations is associated with increased risk for GI symptoms such as chronic constipation and diarrhoea, which decrease quality of life. Several preclinical models of autism also demonstrate microbial dysbiosis. Given that much pre-clinical research is conducted in mouse models, it is important to understand the similarities and differences between the gut microbiome in humans and these models in the context of autism. We conducted a systematic review of the literature using PubMed, ProQuest and Scopus databases to compare microbiome profiles of patients with autism and transgenic (NL3R451C, Shank3 KO, 15q dup), phenotype-first (BTBR) and environmental (Poly I:C, Maternal Inflammation Activation (MIA), valproate) mouse models of autism. Overall, we report changes in fecal microbial communities relevant to ASD based on both clinical and preclinical studies. Here, we identify an overlapping cluster of genera that are modified in both fecal samples from individuals with ASD and mouse models of autism. Specifically, we describe an increased abundance of Bilophila, Clostridium, Dorea and Lactobacillus and a decrease in Blautia genera in both humans and rodents relevant to this disorder. Studies in both humans and mice highlighted multidirectional changes in abundance (i.e. in some cases increased abundance whereas other reports showed decreases) for several genera including Akkermansia, Bacteroides, Bifidobacterium, Parabacteroides and Prevotella, suggesting that these genera may be susceptible to modification in autism. Identification of these microbial profiles may assist in characterising underlying biological mechanisms involving host-microbe interactions and provide future therapeutic targets for improving gut health in autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Gastroenteropatias , Microbioma Gastrointestinal , Animais , Modelos Animais de Doenças , Disbiose/microbiologia , Gastroenteropatias/microbiologia , Humanos , Camundongos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...