Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Inflamm Regen ; 44(1): 6, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347645

RESUMO

BACKGROUND: Severe peripheral nerve damage always requires surgical treatment. Autologous nerve transplantation is a standard treatment, but it is not sufficient due to length limitations and extended surgical time. Even with the available artificial nerves, there is still large room for improvement in their therapeutic effects. Novel treatments for peripheral nerve injury are greatly expected. METHODS: Using a specialized microfluidic device, we generated artificial neurite bundles from human iPSC-derived motor and sensory nerve organoids. We developed a new technology to isolate cell-free neurite bundles from spheroids. Transplantation therapy was carried out for large nerve defects in rat sciatic nerve with novel artificial nerve conduit filled with lineally assembled sets of human neurite bundles. Quantitative comparisons were performed over time to search for the artificial nerve with the therapeutic effect, evaluating the recovery of motor and sensory functions and histological regeneration. In addition, a multidimensional unbiased gene expression profiling was carried out by using next-generation sequencing. RESULT: After transplantation, the neurite bundle-derived artificial nerves exerted significant therapeutic effects, both functionally and histologically. Remarkably, therapeutic efficacy was achieved without immunosuppression, even in xenotransplantation. Transplanted neurite bundles fully dissolved after several weeks, with no tumor formation or cell proliferation, confirming their biosafety. Posttransplant gene expression analysis highlighted the immune system's role in recovery. CONCLUSION: The combination of newly developed microfluidic devices and iPSC technology enables the preparation of artificial nerves from organoid-derived neurite bundles in advance for future treatment of peripheral nerve injury patients. A promising, safe, and effective peripheral nerve treatment is now ready for clinical application.

2.
Inflamm Regen ; 44(1): 8, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419091

RESUMO

BACKGROUND: The development of induced pluripotent stem cells (iPSCs) technology has enabled human cellular disease modeling for inaccessible cell types, such as neural cells in the brain. However, many of the iPSC-derived disease models established to date typically involve only a single cell type. These monoculture models are inadequate for accurately simulating the brain environment, where multiple cell types interact. The limited cell type diversity in monoculture models hinders the accurate recapitulation of disease phenotypes resulting from interactions between different cell types. Therefore, our goal was to create cell models that include multiple interacting cell types to better recapitulate disease phenotypes. METHODS: To establish a co-culture model of neurons and astrocytes, we individually induced neurons and astrocytes from the same iPSCs using our novel differentiation methods, and then co-cultured them. We evaluated the effects of co-culture on neurons and astrocytes using immunocytochemistry, immuno-electron microscopy, and Ca2+ imaging. We also developed a co-culture model using iPSCs from a patient with familial Alzheimer's disease (AD) patient (APP V717L mutation) to investigate whether this model would manifest disease phenotypes not seen in the monoculture models. RESULTS: The co-culture of the neurons and astrocytes increased the branching of astrocyte processes, the number of GFAP-positive cells, neuronal activities, the number of synapses, and the density of presynaptic vesicles. In addition, immuno-electron microscopy confirmed the formation of a tripartite synaptic structure in the co-culture model, and inhibition of glutamate transporters increased neuronal activity. Compared to the co-culture model of the control iPSCs, the co-culture model of familial AD developed astrogliosis-like phenotype, which was not observed in the monoculture model of astrocytes. CONCLUSIONS: Co-culture of iPSC-derived neurons and astrocytes enhanced the morphological changes mimicking the in vivo condition of both cell types. The formation of the functional tripartite synaptic structures in the co-culture model suggested the mutual interaction between the cells. Furthermore, the co-culture model with the APP V717L mutation expressed in neurons exhibited an astrocytic phenotype reminiscent of AD brain pathology. These results suggest that our co-culture model is a valuable tool for disease modeling of neurodegenerative diseases.

3.
Int Immunol ; 36(5): 223-240, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38262747

RESUMO

The gut microbiota plays a crucial role in maintaining epithelial barrier function. Although multiple studies have demonstrated the significance of dietary factors on the gut microbiota and mucosal barrier function, the impact of a purified diet, which has long been used in various animal experiments, on intestinal homeostasis remains to be elucidated. Here, we compared the impact of two different types of diets, a crude diet and an AIN-93G-formula purified diet, on epithelial integrity and the gut microbiota. Purified diet-fed mice exhibited shorter villi and crypt lengths and slower epithelial turnover, particularly in the ileum. In addition, antimicrobial products, including REG3γ, were substantially decreased in purified diet-fed mice. Purified diet feeding also suppressed α1,2-fucosylation on the epithelial surface. Furthermore, the purified diet induced metabolic rewiring to fatty acid oxidation and ketogenesis. 16S ribosomal RNA gene sequencing of the ileal contents and mucus layer revealed distinct gut microbiota compositions between the purified and crude diet-fed mice. Purified diet feeding reduced the abundance of segmented filamentous bacteria (SFB), which potently upregulate REG3γ and fucosyltransferase 2 (Fut2) by stimulating group 3 innate lymphoid cells (ILC3s) to produce IL-22. These observations illustrate that the intake of a crude diet secures epithelial barrier function by facilitating SFB colonization, whereas a purified diet insufficiently establishes the epithelial barrier, at least partly owing to the loss of SFB. Our data suggest that the influence of purified diets on the epithelial barrier integrity should be considered in experiments using purified diets.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Imunidade Inata , Linfócitos , Dieta , Bactérias , Proliferação de Células
4.
Inflamm Regen ; 43(1): 50, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845736

RESUMO

BACKGROUND: Human induced pluripotent stem cell-derived neural stem/progenitor cell (hiPSC-NS/PC)-based cell transplantation has emerged as a groundbreaking method for replacing damaged neural cells and stimulating functional recovery, but its efficacy is strongly influenced by the state of the injured spinal microenvironment. This study evaluates the impact of a dual therapeutic intervention utilizing hepatocyte growth factor (HGF) and hiPSC-NS/PC transplantation on motor function restoration following spinal cord injury (SCI). METHODS: Severe contusive SCI was induced in immunocompromised rats, followed by continuous administration of recombinant human HGF protein into the subarachnoid space immediately after SCI for two weeks. Acute-phase histological and RNA sequencing analyses were conducted. Nine days after the injury, hiPSC-NS/PCs were transplanted into the lesion epicenter of the injured spinal cord, and the functional and histological outcomes were determined. RESULTS: The acute-phase HGF-treated group exhibited vascularization, diverse anti-inflammatory effects, and activation of endogenous neural stem cells after SCI, which collectively contributed to tissue preservation. Following cell transplantation into a favorable environment, the transplanted NS/PCs survived well, facilitating remyelination and neuronal regeneration in host tissues. These comprehensive effects led to substantial enhancements in motor function in the dual-therapy group compared to the single-treatment groups. CONCLUSIONS: We demonstrate that the combined therapeutic approach of HGF preconditioning and hiPSC-NS/PC transplantation enhances locomotor functional recovery post-SCI, highlighting a highly promising therapeutic strategy for acute to subacute SCI.

5.
Biomaterials ; 295: 122002, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36736008

RESUMO

While rapid advancements in regenerative medicine strategies for spinal cord injury (SCI) have been made, most research in this field has focused on the early stages of incomplete injury. However, the majority of patients experience chronic severe injury; therefore, treatments for these situations are fundamentally important. Here, we hypothesized that environmental modulation via a clinically relevant hepatocyte growth factor (HGF)-releasing scaffold and human iPS cell-derived neural stem/progenitor cells (hNS/PCs) transplantation contributes to functional recovery after chronic complete transection SCI. Effective release of HGF from a collagen scaffold induced progressive axonal elongation and increased grafted cell viability by activating microglia/macrophages and meningeal cells, inhibiting inflammation, reducing scar formation, and enhancing vascularization. Furthermore, hNS/PCs transplantation enhanced endogenous neuronal regrowth, the extension of graft axons, and the formation of circuits around the lesion and lumbar enlargement between host and graft neurons, resulting in the restoration of locomotor and urinary function. This study presents an effective therapeutic strategy for severe chronic SCI and provides evidence for the feasibility of regenerative medicine strategies using clinically relevant materials.


Assuntos
Regeneração Nervosa , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/patologia , Neurônios/metabolismo , Transplante de Células-Tronco/métodos , Medula Espinal/patologia , Axônios/patologia , Recuperação de Função Fisiológica
6.
Stem Cells Transl Med ; 12(2): 83-96, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36647673

RESUMO

Cell transplantation therapy using human-induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs) is a new therapeutic strategy for spinal cord injury (SCI). Preclinical studies have demonstrated the efficacy of hiPSC-NS/PCs transplantation in the subacute phase of SCI. However, locomotor recovery secondary to hiPSC-NS/PCs transplantation is limited in the chronic phase, suggesting that additional treatment, including rehabilitative training, is required to ensure recovery. The therapeutic potential of hiPSC-NS/PCs that qualify for clinical application is yet to be fully delineated. Therefore, in this study, we investigated the therapeutic effect of the combined therapy of clinical-grade hiPSC-NS/PCs transplantation and rehabilitative training that could produce synergistic effects in a rodent model of chronic SCI. Our findings indicated that rehabilitative training promoted the survival rate and neuronal differentiation of transplanted hiPSC-NS/PCs. The combination therapy was able to enhance the expressions of the BDNF and NT-3 proteins in the spinal cord tissue. Moreover, rehabilitation promoted neuronal activity and increased 5-HT-positive fibers at the lumbar enlargement. Consequently, the combination therapy significantly improved motor functions. The findings of this study suggest that the combined therapy of hiPSC-NS/PCs transplantation and rehabilitative training has the potential to promote functional recovery even when initiated during chronic SCI.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Traumatismos da Medula Espinal , Humanos , Diferenciação Celular/fisiologia , Traumatismos da Medula Espinal/terapia , Neurônios/metabolismo , Medula Espinal , Recuperação de Função Fisiológica/fisiologia , Transplante de Células-Tronco
7.
Cell Rep Methods ; 2(9): 100289, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36160042

RESUMO

It is known that the human cellular models of Alzheimer's disease (AD) and tauopathy can only recapitulate the very early stage of the disease. To overcome these limitations, we developed a technology to make forebrain organoids (FBOs) from feeder-free induced pluripotent stem cells (iPSC)s by regulating a FGF2 concentration and applied this method to generate FBOs from patients with familial AD (fAD FBOs). The obtained fAD FBOs recapitulated the amyloid-ß pathology and increased tau phosphorylation but not tau aggregates. To fully induce the tau pathology, FBOs were injected with adeno-associated virus (AAV)-expressing P301L mutant tau. In these Tau-P301L FBOs, tau fibrils were observed in the neuronal cell body and neurites with immunoelectron microscopy, in addition to the sarkosyl-insoluble and thioflavin S-positive phospho-tau aggregates. Collectively, this model can be used as a platform for investigating pathogenetic mechanisms and evaluation of target molecules for drug discovery for tauopathy.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Tauopatias , Humanos , Doença de Alzheimer/genética , Dependovirus , Células-Tronco Pluripotentes Induzidas/metabolismo , Organoides/metabolismo , Prosencéfalo/metabolismo , Proteínas tau/genética , Tauopatias/genética , Técnicas de Transferência de Genes
8.
Genes Cells ; 27(11): 643-656, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36043331

RESUMO

The nuclear envelope (NE) provides a permeable barrier that separates the eukaryotic genome from the cytoplasm. NE is a double membrane composed of inner and outer nuclear membranes. Ish1 is a stress-responsive NE protein in the fission yeast, Schizosaccharomyces pombe. Les1 is another NE protein that shares several similar domains with Ish1, but the relationship between them remains unknown. In this study, using fluorescence and electron microscopy, we found that most regions of these proteins were localized within the NE lumen. We also found that Ish1 interacted with Les1 via its C-terminal region in the NE lumen and that the NE localization of Ish1 depended on the C-terminal region of Les1. Ish1 and Les1 were co-localized at the NE in interphase cells, but when the nucleus divided at the end of mitosis (closed mitosis), they showed distinguishable localization at the midzone membrane domain. These results suggest the regulated interaction between Ish1 and Les1 in the NE lumen, although this interaction does not appear to be essential for cell survival.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Mitose , Núcleo Celular/metabolismo , Proteínas de Membrana/metabolismo
9.
Commun Biol ; 5(1): 803, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948599

RESUMO

Expectations for neural stem/progenitor cell (NS/PC) transplantation as a treatment for spinal cord injury (SCI) are increasing. However, whether and how grafted cells are incorporated into the host neural circuit and contribute to motor function recovery remain unknown. The aim of this project was to establish a novel non-invasive in vivo imaging system to visualize the activity of neural grafts by which we can simultaneously demonstrate the circuit-level integration between the graft and host and the contribution of graft neuronal activity to host behaviour. We introduced Akaluc, a newly engineered luciferase, under the control of enhanced synaptic activity-responsive element (E-SARE), a potent neuronal activity-dependent synthetic promoter, into NS/PCs and engrafted the cells into SCI model mice. Through the use of this system, we found that the activity of grafted cells was integrated with host behaviour and driven by host neural circuit inputs. This non-invasive system is expected to help elucidate the therapeutic mechanism of cell transplantation treatment for SCI.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Animais , Diferenciação Celular/fisiologia , Camundongos , Células-Tronco Neurais/fisiologia , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco/métodos
11.
J Neurotrauma ; 39(9-10): 667-682, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35196890

RESUMO

Human-induced pluripotent stem cell-derived neural stem/progenitor cell (hiPSC-NS/PC) transplantation during the acute phase of spinal cord injury (SCI) is not effective due to the inflammatory response occurring immediately after SCI, which negatively impacts transplanted cell survival. Therefore, we chose to study the powerful chemoattractant complement C5a as a method to generate a more favorable transplantation environment. We hypothesized that suppression of the inflammatory response immediately after SCI by C5a receptor antagonist (C5aRA) would improve the efficacy of hiPSC-NS/PCs transplantation for acute phase SCI. Here, we evaluated the influence of C5aRA on the inflammatory reaction during the acute phase after SCI, and observed significant reductions in several inflammatory cytokines, macrophages, neutrophils, and apoptotic markers. Next, we divided the SCI mice into four groups: 1) phosphate-buffered saline (PBS) only; 2) C5aRA only; 3) PBS + transplantation (PBS+TP); and 4) C5aRA + transplantation (C5aRA+TP). Immediately after SCI, C5aRA or PBS was injected once a day for 4 consecutive days, followed by hiPSC-NS/PC transplantation or PBS into the lesion epicenter on Day 4. The C5aRA+TP group had better functional improvement compared with the PBS only group. The C5aRA+TP group also had a significantly higher cell survival rate compared with the PBS+TP group. This study demonstrates that administration of C5aRA can suppress the inflammatory response during the acute phase of SCI, while improving the survival rate of transplanted hiPSC-NS/PCs, as well as enhancing motor functional restoration. Human-induced pluripotent stem cell-derived neural stem/progenitor cell transplantation with C5aRA is a promising treatment during the acute injury phase for SCI patients.


Assuntos
Células-Tronco Pluripotentes Induzidas , Traumatismos da Medula Espinal , Animais , Diferenciação Celular/fisiologia , Humanos , Camundongos , Receptor da Anafilatoxina C5a , Recuperação de Função Fisiológica/fisiologia , Medula Espinal , Transplante de Células-Tronco/métodos
12.
Commun Biol ; 5(1): 78, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058555

RESUMO

DNA transfection is an important technology in life sciences, wherein nuclear entry of DNA is necessary to express exogenous DNA. Non-viral vectors and their transfection reagents are useful as safe transfection tools. However, they have no effect on the transfection of non-proliferating cells, the reason for which is not well understood. This study elucidates the mechanism through which transfected DNA enters the nucleus for gene expression. To monitor the behavior of transfected DNA, we introduce plasmid bearing lacO repeats and RFP-coding sequences into cells expressing GFP-LacI and observe plasmid behavior and RFP expression in living cells. RFP expression appears only after mitosis. Electron microscopy reveals that plasmids are wrapped with nuclear envelope (NE)‒like membranes or associated with chromosomes at telophase. The depletion of BAF, which is involved in NE reformation, delays plasmid RFP expression. These results suggest that transfected DNA is incorporated into the nucleus during NE reformation at telophase.


Assuntos
Núcleo Celular/fisiologia , DNA/genética , Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Plasmídeos/genética , Transporte Biológico , Linhagem Celular Tumoral , Humanos , Proteínas de Membrana/genética , Mutação , Proteínas Nucleares/genética , Análise de Célula Única , Telófase , Transfecção
13.
Stem Cell Reports ; 17(1): 127-142, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021049

RESUMO

Transplantation of neural stem/progenitor cells (NS/PCs) derived from human induced pluripotent stem cells (hiPSCs) is considered to be a promising therapy for spinal cord injury (SCI) and will soon be translated to the clinical phase. However, how grafted neuronal activity influences functional recovery has not been fully elucidated. Here, we show the locomotor functional changes caused by inhibiting the neuronal activity of grafted cells using a designer receptor exclusively activated by designer drugs (DREADD). In vitro analyses of inhibitory DREADD (hM4Di)-expressing cells demonstrated the precise inhibition of neuronal activity via administration of clozapine N-oxide. This inhibition led to a significant decrease in locomotor function in SCI mice with cell transplantation, which was exclusively observed following the maturation of grafted neurons. Furthermore, trans-synaptic tracing revealed the integration of graft neurons into the host motor circuitry. These results highlight the significance of engrafting functionally competent neurons by hiPSC-NS/PC transplantation for sufficient recovery from SCI.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Neurônios/metabolismo , Piperazinas/farmacologia , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco , Animais , Diferenciação Celular , Células Cultivadas , Gerenciamento Clínico , Humanos , Locomoção , Camundongos , Atividade Motora , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/etiologia , Transplante de Células-Tronco/métodos
14.
Stem Cells Transl Med ; 10(3): 398-413, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33226180

RESUMO

Cell-based therapy targeting spinal cord injury (SCI) is an attractive approach to promote functional recovery by replacing damaged tissue. We and other groups have reported the effectiveness of transplanting neural stem/progenitor cells (NS/PCs) derived from human induced pluripotent stem cells (hiPSCs) in SCI animal models for neuronal replacement. Glial replacement is an additional approach for tissue repair; however, the lack of robust procedures to drive iPSCs into NS/PCs which can produce glial cells has hindered the development of glial cell transplantation for the restoration of neuronal functions after SCI. Here, we established a method to generate NS/PCs with gliogenic competence (gNS/PCs) optimized for clinical relevance and utilized them as a source of therapeutic NS/PCs for SCI. We could successfully generate gNS/PCs from clinically relevant hiPSCs, which efficiently produced astrocytes and oligodendrocytes in vitro. We also performed comparison between gNS/PCs and neurogenic NS/PCs based on single cell RNA-seq analysis and found that gNS/PCs were distinguished by expression of several transcription factors including HEY2 and NFIB. After gNS/PC transplantation, the graft did not exhibit tumor-like tissue formation, indicating the safety of them as a source of cell therapy. Importantly, the gNS/PCs triggered functional recovery in an SCI animal model, with remyelination of demyelinated axons and improved motor function. Given the inherent safety of gNS/PCs and favorable outcomes observed after their transplantation, cell-based medicine using the gNS/PCs-induction procedure described here together with clinically relevant iPSCs is realistic and would be beneficial for SCI patients.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Traumatismos da Medula Espinal , Animais , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Neurais/transplante , Recuperação de Função Fisiológica , Medula Espinal , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco
15.
Mol Brain ; 13(1): 120, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883317

RESUMO

The transplantation of neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (iPSCs) has beneficial effects on spinal cord injury (SCI). However, while there are many subtypes of NPCs with different regional identities, the subtype of iPSC-derived NPCs that is most appropriate for cell therapy for SCI has not been identified. Here, we generated forebrain- and spinal cord-type NPCs from human iPSCs and grafted them onto the injured spinal cord in mice. These two types of NPCs retained their regional identities after transplantation and exhibited different graft-host interconnection properties. NPCs with spinal cord regional identity but not those with forebrain identity resulted in functional improvement in SCI mice, especially in those with mild-to-moderate lesions. This study highlights the importance of the regional identity of human iPSC-derived NPCs used in cell therapy for SCI.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Especificidade de Órgãos , Traumatismos da Medula Espinal/terapia , Animais , Comportamento Animal , Diferenciação Celular , Linhagem Celular , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Atividade Motora , Recuperação de Função Fisiológica , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Medula Espinal/ultraestrutura , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
16.
Dev Biol ; 464(2): 137-144, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32565279

RESUMO

Tissue macrophages, which are ubiquitously present innate immune cells, play versatile roles in development and organogenesis. During development, macrophages prune transient or unnecessary synapses in neuronal development, and prune blood vessels in vascular development, facilitating appropriate tissue remodeling. In the present study, we identified that macrophages contributed to the development of pupillary morphology. Csf1op/op mutant mice, in which ocular macrophages are nearly absent, exhibited abnormal pupillary edges, with abnormal protrusions of excess iris tissue into the pupillary space. Macrophages located near the pupillary edge engulfed pigmented debris, which likely consisted of unnecessary iris protrusions that emerge during smoothening of the pupillary edge. Indeed, pupillary edge macrophages phenotypically possessed some features of M2 macrophages, consistent with robust tissue engulfment and remodeling activities. Interestingly, protruding irises in Csf1op/op mice were only detected in gaps between regressing blood vessels. Taken together, our findings uncovered a new role for ocular macrophages, demonstrating that this cell population is important for iris pruning during development.


Assuntos
Macrófagos/metabolismo , Pupila , Animais , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/citologia , Camundongos , Camundongos Mutantes
17.
Commun Biol ; 3(1): 276, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483293

RESUMO

The nuclear envelope (NE) continues to the endoplasmic reticulum (ER). Proper partitioning of NE and ER is crucial for cellular activity, but the key factors maintaining the boundary between NE and ER remain to be elucidated. Here we show that the conserved membrane proteins Lem2 and Lnp1 cooperatively play a crucial role in maintaining the NE-ER membrane boundary in fission yeast Schizosaccharomyces pombe. Cells lacking both Lem2 and Lnp1 caused severe growth defects associated with aberrant expansion of the NE/ER membranes, abnormal leakage of nuclear proteins, and abnormal formation of vacuolar-like structures in the nucleus. Overexpression of the ER membrane protein Apq12 rescued the growth defect associated with membrane disorder caused by the loss of Lem2 and Lnp1. Genetic analysis showed that Apq12 had overlapping functions with Lnp1. We propose that a membrane protein network with Lem2 and Lnp1 acts as a critical factor to maintain the NE-ER boundary.


Assuntos
Proteínas de Ligação a DNA/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
18.
Front Neural Circuits ; 13: 29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133819

RESUMO

Recent improvements in correlative light and electron microscopy (CLEM) technology have led to dramatic improvements in the ability to observe tissues and cells. Fluorescence labeling has been used to visualize the localization of molecules of interest through immunostaining or genetic modification strategies for the identification of the molecular signatures of biological specimens. Newer technologies such as tissue clearing have expanded the field of observation available for fluorescence labeling; however, the area of correlative observation available for electron microscopy (EM) remains restricted. In this study, we developed a large-area CLEM imaging procedure to show specific molecular localization in large-scale EM sections of mouse and marmoset brain. Target molecules were labeled with antibodies and sequentially visualized in cryostat sections using fluorescence and gold particles. Fluorescence images were obtained by light microscopy immediately after antibody staining. Immunostained sections were postfixed for EM, and silver-enhanced sections were dehydrated in a graded ethanol series and embedded in resin. Ultrathin sections for EM were prepared from fully polymerized resin blocks, collected on silicon wafers, and observed by multibeam scanning electron microscopy (SEM). Multibeam SEM has made rapid, large-area observation at high resolution possible, paving the way for the analysis of detailed structures using the CLEM approach. Here, we describe detailed methods for large-area CLEM in various tissues of both rodents and primates.


Assuntos
Encéfalo/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Neuroimagem/métodos , Animais , Callithrix , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos
19.
J Cell Sci ; 132(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30975915

RESUMO

In eukaryotic cells, chromosomes are confined to the nucleus, which is compartmentalized by the nuclear membranes; these are continuous with the endoplasmic reticulum membranes. Maintaining the homeostasis of these membranes is an important cellular activity performed by lipid metabolic enzymes. However, how lipid metabolic enzymes affect nuclear membrane functions remains to be elucidated. We found that the very-long-chain fatty acid elongase Elo2 is located in the nuclear membrane and prevents lethal defects associated with nuclear membrane ruptures in mutants of the nuclear membrane proteins Lem2 and Bqt4 in the fission yeast Schizosaccharomyces pombe. Lipid composition analysis shows that t20:0/24:0 phytoceramide (a conjugate of C20:0 phytosphingosine and C24:0 fatty acid) is a major ceramide species in S. pombe The quantity of this ceramide is reduced in the absence of Lem2, and restored by increased expression of Elo2. Furthermore, loss of S. pombe Elo2 can be rescued by its human orthologs. These results suggest that the conserved very-long-chain fatty acid elongase producing the ceramide component is essential for nuclear membrane integrity and cell viability in eukaryotes.This article has an associated First Person interview with the first author of the paper.


Assuntos
Acetiltransferases/metabolismo , Elongases de Ácidos Graxos/metabolismo , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
J Neurosci ; 39(21): 4036-4050, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30862665

RESUMO

The axonal conduction of action potentials affects the absolute time it takes to transmit nerve impulses as well as temporal summation at destination synapses. At the physiological level, oligodendrocyte depolarization facilitates axonal conduction along myelinated fibers in the hippocampus; however, the functional significance of this facilitation is largely unknown. In this study, we examined the physiology of the facilitation of axonal conduction by investigating the changes in synaptic responses at destination synapses using male and female mice in which channelrhodopsin-2 expression was restricted to oligodendrocytes. The subiculum, one of the projection areas of the examined axons at the alveus of the hippocampus, is divided into three regions (proximal, mid, and distal) and contains two types of principal neurons: regular firing and bursting pyramidal cells. We found a significant increase in excitatory synaptic responses following optogenetic oligodendrocyte depolarization in bursting neurons at two of the three regions, but not in regular firing neurons at any region. The long-term potentiation (LTP) induced by theta burst stimulation at the synapses showing a significant increase was also enhanced after oligodendrocyte depolarization. Conversely, the reduction of oligodendrocyte depolarization during theta burst stimulation, which was achieved by photostimulation of archaerhodopsin-T expressed selectively on oligodendrocytes, reduced the magnitude of LTP. These results show that oligodendrocyte depolarization contributes to the fine control of synaptic activity between the axons they myelinate and targets subicular cells in a region- and cell type-specific manner, and suggest that oligodendrocyte depolarization during conditioning of stimuli is involved in the induction of LTP.SIGNIFICANCE STATEMENT All activity in the nervous system depends on the propagation of action potentials. Changes in the axonal conduction of action potentials influence the timing of synaptic transmission and information processing in neural circuits. At the physiological level, oligodendrocyte depolarization facilitates axonal conduction along myelinated fibers. In this study, we investigated the functional significance of the facilitation of axonal conduction induced by physiological oligodendrocyte depolarization. Using optogenetics and electrophysiological recordings, we demonstrated that oligodendrocyte depolarization in mice expressing channelrhodopsin-2 on oligodendrocytes increased excitatory synaptic responses and enhanced the induction of long-term potentiation at destination synapses in a region- and cell type-specific manner. This facilitation may have a hitherto unappreciated influence on the transfer of information between regions in the nervous system.


Assuntos
Potenciais de Ação/fisiologia , Potenciação de Longa Duração/fisiologia , Oligodendroglia/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Feminino , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...