Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-520006

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes significant morbidity and mortality worldwide, seriously impacting not only human health but also the global economy. Furthermore, over 1 million cases of newly emerging or re-emerging viral infections, specifically dengue virus (DENV), are known to occur annually. Because no virus-specific and fully effective treatments against these and many other viruses have been approved, they continue to be responsible for large-scale epidemics and global pandemics. Thus, there is an urgent need for novel, effective therapeutic agents. Here, we identified 2-thiouridine (s2U) as a broad-spectrum antiviral nucleoside analogue that exhibited antiviral activity against SARS-CoV-2 and its variants of concern, including the Delta and Omicron variants, as well as a number of other positive-sense single-stranded RNA (ssRNA+) viruses, including DENV. s2U inhibits RNA synthesis catalyzed by viral RNA-dependent RNA polymerase, thereby reducing viral RNA replication, which improved the survival rate of mice infected with SARS-CoV-2 or DENV in our animal models. Our findings demonstrate that s2U is a potential broad-spectrum antiviral agent not only against SARS-CoV-2 and DENV but other ssRNA+ viruses.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-480338

RESUMO

In parallel with vaccination, oral antiviral agents are highly anticipated to act as countermeasures for the treatment of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Oral antiviral medication demands not only high antiviral activity but also target specificity, favorable oral bioavailability, and high metabolic stability. Although a large number of compounds have been identified as potential inhibitors of SARS-CoV-2 infection in vitro, few have proven to be effective in vivo. Here, we show that oral administration of S-217622, a novel inhibitor of SARS-CoV-2 main protease (Mpro, also known as 3C-like protease), decreases viral load and ameliorates the disease severity in SARS-CoV-2-infected hamsters. S-217622 inhibited viral proliferation at low nanomolar to sub-micromolar concentrations in cells. Oral administration of S-217622 demonstrated eminent pharmacokinetic properties and accelerated recovery from acute SARS-CoV-2 infection in hamster recipients. Moreover, S-217622 exerted antiviral activity against SARS-CoV-2 variants of concern (VOCs), including the highly pathogenic Delta variant and the recently emerged Omicron variant. Overall, our study provides evidence that S-217622, an antiviral agent that is under evaluation in a phase II/III clinical trial, possesses remarkable antiviral potency and efficacy against SARS-CoV-2 and is a prospective oral therapeutic option for COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA