Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(30): 4040-4043, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38421220

RESUMO

Incorporating an N-phenylimide unit into macrocycles enabled measurements of macrocyclization strains by comparing the N-phenylimide's conformational changes to similar units attached to a linear-chain control. Systems of larger macrocycles displayed negligible macrocyclization strain, while smaller macrocycles demonstrated proportionate effects, emphasizing the use of N-phenylimides as conformational reporters of macrocyclization strain.

2.
Chemistry ; 29(6): e202203139, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36286329

RESUMO

Fluorine gauche effects are conformational properties of 2-fluoroethanes often applied in modern molecular designs. However, the physical origins of fluorine gauche effects are not well understood, with the consensus favoring the established hyperconjugation theory over an emerging electrostatic model. Using a series of model systems, we show that a shift to fluorine gauche effects can be influenced by intramolecular CH⋅⋅⋅π aromatic interactions, a through-space event. Modulating the π-ring (forming the aromatic interaction) with substituent groups resulted in a linear Hammett relationship, thus indicating that the CH⋅⋅⋅π interaction has electrostatic features. For instance, attaching a nitro group (an electron-withdrawing substituent) to the π-ring weakened the CH⋅⋅⋅π interaction and led to a gauche preference, whereas an anti conformer is preferred with amine as substituent. The experimental results performed by using proton NMR spectroscopy are corroborated by gas-phase DFT calculations and solid-state X-ray crystallography.

3.
J Phys Chem A ; 122(4): 909-915, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29332380

RESUMO

CH-π aromatic interactions are ubiquitous in nature and are capable of regulating important chemical and biochemical processes. Solvation and aromatic substituent effects are known to perturb the CH-π aromatic interactions. However, the nature by which the two factors influence one another is relatively unexplored. Here we demonstrate experimentally that there is a quantitative correlation between substituent effects in CH-π interactions and the hydrogen-bond acceptor constants of the solvating molecule. The CH-π interaction energies were measured by the conformational study of a series of aryl-substituted molecular balances in which the conformational preferences depended on the relative strengths of the methyl and aryl CH-π interactions in the folded and unfolded states, respectively. Due to the favorable methyl-aromatic interactions, the balances were found to exist predominantly in the folded state. The observed substituent effect in the conformational preferences of the balances was controlled by the explicit solvation/desolvation of the aryl proton. The interpretation of the conformational free energy as a function of substituents and solvation using Hunter's solvation model revealed that a linear relationship exists between the sensitivity of aromatic substituent effects (i.e., the ρ values derived from Hammett plots) and the hydrogen-bond acceptor propensity (ßs) of the solvent molecule: ρ = 0.06ßs - 0.04.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA