Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22082, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086907

RESUMO

Lithium-ion batteries (LIBs) have become essential components that power most current technologies, such as smartphones and electric vehicles, thus making various safety evaluations necessary to ensure their safe use. Among these evaluations, heating tests remain the most prominent source of safety issues. However, information on the phenomena occurring inside batteries during heating has remained inaccessible. In this study, we demonstrate the first in situ neutron imaging method to observe the internal structural deformation of LIBs during heating. We developed an airtight aluminium chamber specially designed to prevent radioactive contamination during in situ neutron imaging. We successfully observed the liquid electrolyte fluctuation inside a battery sample and the deformation of the protective plastic film upon heating up to thermal runaway. Hence, this work provides the foundation for future investigations of the internal changes induced in batteries during heating tests and experiments.

2.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791860

RESUMO

We have developed a new neutron phase imaging system with a Talbot-Lau interferometer for utilization at the CN-3 port of the Kyoto University Reactor. To achieve efficient differential-phase imaging and visibility (dark-field) imaging at this beamline, we adopted a relatively shorter design wavelength of 2.7 Å. By fabricating neutron absorption gratings with thick gadolinium absorbers, we were able to obtain clear moiré fringes with a high visibility of 55% for thermal neutrons. As a demonstration of its imaging capabilities for expanded actual utilization in the medium-sized sources, we observed additively manufactured rods of Inconel 718. Using visibility imaging, we successfully examined variations in the size of defects in the rods caused by hot isostatic pressing process. In addition, we conducted tomography measurements of the rods, which allowed us to reveal the spatial distribution of defects at sub-micrometer scales.

3.
Sci Rep ; 13(1): 9184, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280321

RESUMO

Magnetic components are key parts of energy conversion systems, such as electric generators, motors, power electric devices, and magnetic refrigerators. Toroidal inductors with magnetic ring cores can be found inside such electric devices that are used daily. For such inductors, magnetization vector M is believed to circulate with/without distribution inside magnetic cores as electric power was used in the late nineteenth century. Nevertheless, notably, the distribution of M has never been directly verified. Herein, we measured a map of polarized neutron transmission spectra for a ferrite ring core assembled on a familiar inductor device. The results showed that M circulates inside the ring core with a ferrimagnetic spin order when power is supplied to the coil. In other words, this method enables the multiscale operando imaging of magnetic states, allowing us to evaluate the novel architectures of high-performance energy conversion systems using magnetic components with complex magnetic states.

4.
J Imaging ; 7(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34821863

RESUMO

Neutron radiography is regarded as complementary to X-ray radiography in terms of transmittance through materials, but its spatial resolution is still insufficient. In order to achieve higher resolution in neutron imaging, several approaches have been adopted, such as optical magnification and event centroiding. In this paper, the authors focused on modification of the scintillator. A Gd3Al2Ga3O12:Ce single-crystal scintillator was applied to neutron radiography for the first time and a spatial resolution of 10.5 µm was achieved. The results indicate that this material can be a powerful candidate for a new neutron scintillator providing a resolution in micrometer order by optimizing the optical system and increasing the scintillator luminosity.

5.
Sci Rep ; 11(1): 14919, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290334

RESUMO

Laser powder bed fusion is an additive manufacturing technique extensively used for the production of metallic components. Despite this process has reached a status at which parts are produced with mechanical properties comparable to those from conventional production, it is still prone to introduce detrimental tensile residual stresses towards the surfaces along the building direction, implying negative consequences on fatigue life and resistance to crack formations. Laser shock peening (LSP) is a promising method adopted to compensate tensile residual stresses and to introduce beneficial compressive residual stress on the treated surfaces. Using neutron Bragg edge imaging, we perform a parametric study of LSP applied to 316L steel samples produced by laser powder bed fusion additive manufacturing. We include in the study the novel 3D-LSP technique, where samples are LSP treated also during the building process, at intermediate build layers. The LSP energy and spot overlap were set to either 1.0 or 1.5 J and 40[Formula: see text] or 80[Formula: see text] respectively. The results support the use of 3D-LSP treatment with the higher LSP laser energy and overlap applied, which showed a relative increase of surface compressive residual stress (CRS) and CRS depth by 54[Formula: see text] and 104[Formula: see text] respectively, compared to the conventional LSP treatment.

6.
Sci Rep ; 11(1): 4155, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33603006

RESUMO

A time-of-flight Bragg-edge neutron transmission imaging was used to investigate the microstructure and strain distributions in a gear hardened by a newly developed two-step induction-heating method: precursor (Sample 1) and final product (Sample 2). The edge-position and edge-broadening were determined and mapped with high spatial resolution, which enabled us to confirm the two-dimensional distributions of the microstructure and residual strain. A deep hardened layer was made for Sample 1 in which martensite was formed on the entire teeth and the outer peripheral portion of the gear body. Sample 2 was subjected to double induction-hardening, where a tempered martensite was formed as the thermal refined microstructure between a fine-grained martensite at the tooth surface and a ferrite-pearlite microstructure at the core. The relationship between edge-broadening and the Vickers hardness described by a linear equation was employed to derive the elastic residual strain. The residual strain map for Sample 2 revealed that a steep compressive strain was introduced into the fine-grained martensite at the tooth surface by the super rapid induction-heating and quenching process. The reversal of tension was speculated to occur below 2 mm from the tooth tip, and the strain was almost zero in the core region.

7.
Phys Chem Chem Phys ; 23(2): 1062-1071, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33346285

RESUMO

This study is the first report on liquid water and ice imaging conducted at a pulsed spallation neutron source facility. Neutron imaging can be utilised to visualise the water distribution inside polymer electrolyte fuel cells (PEFCs). Particularly, energy-resolved neutron imaging is a methodology capable of distinguishing between liquid water and ice, and is effective for investigating ice formation in PEFCs operating in a subfreezing environment. The distinction principle is based on the fact that the cross sections of liquid water and ice differ from each other at low neutron energies. In order to quantitatively observe transient freezing and thawing phenomena in a multiphase mixture (gas/liquid/solid) within real PEFCs with high spatial resolution, a pulsed neutron beam with both high intensity and wide energy range is most appropriate. In the validation study of the present work, we used water sealed in narrow capillary tubes to simulate the flow channels of a PEFC, and a pulsed neutron beam was applied to distinguish ice, liquid water and super-cooled water, and to clarify freezing and thawing phenomena of the water within the capillary tubes. Moreover, we have enabled the observation of liquid water/ice distributions in a large field of view (300 mm × 300 mm) by manufacturing a sub-zero environment chamber that can be cooled down to -30 °C, as a step towards in situ visualisation of full-size fuel cells.

8.
Rev Sci Instrum ; 91(4): 043302, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357693

RESUMO

The energy-resolved neutron imaging system, RADEN, has been installed at the pulsed neutron source in the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Research Complex. In addition to conventional neutron radiography and tomography, RADEN, the world's first imaging beam-line at a pulsed neutron source, provides three main options for new, quantitative neutron imaging techniques: Bragg-edge imaging to visualize the spatial distribution of crystallographic information, resonance absorption imaging for elemental composition and temperature information, and polarized neutron imaging for magnetic field information. This paper describes the results of characterization studies of the neutronic performance and installed devices at RADEN and shows the results of several demonstration studies for pulsed neutron imaging.

9.
Sci Rep ; 8(1): 2214, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396502

RESUMO

Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non-destructively with the potential to probe the interior of bulk samples which is not amenable otherwise. Using a pioneering polarimetric set-up for ToF neutron instrumentation in combination with a newly developed tailored reconstruction algorithm, the magnetic field generated by a current carrying solenoid has been measured and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic fields. The technique puts the potential of the ToF time structure of pulsed neutron sources to full use in order to optimise the recorded information quality and reduce measurement time.

10.
Sci Rep ; 7(1): 15516, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138478

RESUMO

Neutron diffractometry has been a critical tool for clarifying spin structures. In contrast, little attention has been paid to neutron transmission spectroscopy, even though they are different types of the same phenomenon. Soon, it will be possible to measure the wavelength dependence of transmissions easily using accelerator-driven neutron facilities. Therefore, we have started studying the potential of spectroscopy in magnetism, and in this paper, we report the first observation of a magnetic Bragg dip and Bragg edge in the neutron transmission spectra of a typical spin superstructure; clear antiferromagnetic Bragg dips and Bragg edges are found for a single crystal and powder of nickel oxide, respectively. The obtained results show that transmission spectroscopy is a promising tool for measurements under multi-extreme conditions and for the precise analyses of spin structures, not only in MW-class pulsed spallation source facilities but also in compact neutron source facilities.

11.
Sci Rep ; 7(1): 9561, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28842660

RESUMO

The physical properties of polycrystalline materials depend on their microstructure, which is the nano- to centimeter scale arrangement of phases and defects in their interior. Such microstructure depends on the shape, crystallographic phase and orientation, and interfacing of the grains constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND enables studies of samples that can be both larger in size and made of heavier elements. Moreover, ToF 3DND facilitates the use of complicated sample environments. The basic ToF 3DND setup, utilizing an imaging detector with high spatial and temporal resolution, can easily be implemented at a time-of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure. The reconstruction algorithms have been validated by reconstructing two stacked Co-Ni-Ga single crystals, and by comparison with a grain map obtained by post-mortem electron backscatter diffraction (EBSD).

12.
Sci Rep ; 7: 40759, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102285

RESUMO

Energy-resolved neutron imaging enables non-destructive analyses of bulk structure and elemental composition, which can be resolved with high spatial resolution at bright pulsed spallation neutron sources due to recent developments and improvements of neutron counting detectors. This technique, suitable for many applications, is demonstrated here with a specific study of ~5-10 mm thick natural gold samples. Through the analysis of neutron absorption resonances the spatial distribution of palladium (with average elemental concentration of ~0.4 atom% and ~5 atom%) is mapped within the gold samples. At the same time, the analysis of coherent neutron scattering in the thermal and cold energy regimes reveals which samples have a single-crystalline bulk structure through the entire sample volume. A spatially resolved analysis is possible because neutron transmission spectra are measured simultaneously on each detector pixel in the epithermal, thermal and cold energy ranges. With a pixel size of 55 µm and a detector-area of 512 by 512 pixels, a total of 262,144 neutron transmission spectra are measured concurrently. The results of our experiments indicate that high resolution energy-resolved neutron imaging is a very attractive analytical technique in cases where other conventional non-destructive methods are ineffective due to sample opacity.

13.
Sci Technol Adv Mater ; 17(1): 324-336, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877885

RESUMO

Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 µm resolution) distribution of some microstructure properties, such as residual strain, texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. In addition, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.

14.
J Appl Crystallogr ; 49(Pt 4): 1130-1140, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27504075

RESUMO

A nondestructive study of the internal structure and compositional gradient of dissimilar metal-alloy welds through energy-resolved neutron imaging is described in this paper. The ability of neutrons to penetrate thick metal objects (up to several cm) provides a unique possibility to examine samples which are opaque to other conventional techniques. The presence of Bragg edges in the measured neutron transmission spectra can be used to characterize the internal residual strain within the samples and some microstructural features, e.g. texture within the grains, while neutron resonance absorption provides the possibility to map the degree of uniformity in mixing of the participating alloys and intermetallic formation within the welds. In addition, voids and other defects can be revealed by the variation of neutron attenuation across the samples. This paper demonstrates the potential of neutron energy-resolved imaging to measure all these characteristics simultaneously in a single experiment with sub-mm spatial resolution. Two dissimilar alloy welds are used in this study: Al autogenously laser welded to steel, and Ti gas metal arc welded (GMAW) to stainless steel using Cu as a filler alloy. The cold metal transfer variant of the GMAW process was used in joining the Ti to the stainless steel in order to minimize the heat input. The distributions of the lattice parameter and texture variation in these welds as well as the presence of voids and defects in the melt region are mapped across the welds. The depth of the thermal front in the Al-steel weld is clearly resolved and could be used to optimize the welding process. A highly textured structure is revealed in the Ti to stainless steel joint where copper was used as a filler wire. The limited diffusion of Ti into the weld region is also verified by the resonance absorption.

15.
Phys Chem Chem Phys ; 7(8): 1836-8, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19787946

RESUMO

A neutron scintillation detector based on a position-sensitive photomultiplier has been developed for neutron spin echo and small angle neutron scattering measurements. This photomultiplier has good spatial resolution, less than 1 mm2. The detection efficiency of gamma ray background is very low for using a thin ZnS/6LiF scintillator. The effective area of this detector is around 60 cm2.


Assuntos
Nêutrons , Contagem de Cintilação/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...