Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytochemistry ; 108: 157-70, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25446237

RESUMO

The MeOH extract of defatted shea (Vitellaria paradoxa; Sapotaceae) kernels was investigated for its constituents, and fifteen oleanane-type triterpene acids and glycosides, two steroid glucosides, two pentane-2,4-diol glucosides, seven phenolic compounds, and three sugars, were isolated. The structures of five triterpene glycosides were elucidated on the basis of spectroscopic and chemical methods. Upon evaluation of the bioactivity of the isolated compounds, it was found that some or most of the compounds have potent or moderate inhibitory activities against the following: melanogenesis in B16 melanoma cells induced by α-melanocyte-stimulating hormone (α-MSH); generation of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, against Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-teradecanoylphorbol 13-acetate (TPA) in Raji cells; t TPA-induced inflammation in mice, and proliferation of one or more of HL-60, A549, AZ521, and SK-BR-3 human cancer cell lines, respectively. Western blot analysis established that paradoxoside E inhibits melanogenesis by regulation of expression of microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein-1 (TRP-1) and TRP-2. In addition, tieghemelin A was demonstrated to exhibit cytotoxic activity against A549 cells (IC50 13.5 µM) mainly due to induction of apoptosis by flow cytometry. The extract of defatted shea kernels and its constituents may be, therefore, valuable as potential antioxidant, anti-inflammatory, skin-whitening, chemopreventive, and anticancer agents.


Assuntos
Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Sapotaceae/química , Triterpenos/isolamento & purificação , Triterpenos/farmacologia , Animais , Antígenos Virais/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Glicosídeos/química , Células HL-60 , Humanos , Melaninas/antagonistas & inibidores , Camundongos , Estrutura Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Ressonância Magnética Nuclear Biomolecular , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Oxirredutases , Picratos/farmacologia , Saponinas/farmacologia , Sementes/química , Triterpenos/química , alfa-MSH/efeitos dos fármacos
2.
Chem Biodivers ; 11(4): 505-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24706622

RESUMO

Six new limonoids, 7-benzoyl-17-epinimbocinol (5), 3-acetyl-7-tigloylnimbidinin (8), 1-isovaleroyl-1-detigloylsalanninolide (15), 2,3-dihydro-3α-methoxynimbolide (16), deacetyl-20,21-epoxy-20,22-dihydro-21-deoxyisonimbinolide (26), and deacetyl-20,21,22,23-tetrahydro-20,22-dihydroxy-21,23-dimethoxynimbin (27), along with 28 known limonoids, 1-4, 6, 7, 9-14, 17-25, and 28-34, and two known flavonoids, 35 and 36, have been isolated from the extracts of bark, leaves, roots, and seeds of Azadirachta indica A. Juss. var. siamensis Valeton (Siamese neem tree; Meliaceae). The structures of the new compounds were elucidated on the basis of extensive spectroscopic analysis and comparison with literature data. All of these compounds were evaluated for their cytotoxic activities against leukemia (HL60), lung (A549), stomach (AZ521), and breast (SK-BR-3) cancer cell lines. Eleven compounds, 1, 2, 4-7, 13, 16, 17, 29, and 30, exhibited potent cytotoxicities against one or more cell lines with IC50 values in the range of 0.1-9.3 µM. Compound 16 induced apoptotic cell death in AZ521 cells upon evaluation of the apoptosis-inducing activity by flow cytometric analysis. Western blot analysis on AZ521 cells revealed that compound 16 activated caspases-3, -8, and -9, while increasing the ratio of Bax/Bcl-2. This suggested that 16 induced apoptosis via both mitochondrial and death receptor pathways in AZ521. In addition, upon evaluation of all compounds against the melanogenesis in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), 20 limonoids, i.e., 1-3, 6, 9-11, 18, 19, 21-29, 32, and 34, and two flavonoids, 35 and 36, exhibited melanogenesis-inhibitory activities, with no, or almost no, toxicities to the cells at lower and/or higher concentrations, which were more potent than the reference arbutin, a known melanogenesis inhibitor. Western blot analysis showed that nimbin (18) reduced the protein levels of microphtalmia-associated transcription factor (MITF), tyrosinase, tyrosine-related protein 1 (TRP-1), and TRP-2 mostly in a concentration-dependent manner, indicating that 18 inhibits melanogenesis on a α-MSH-stimulated B16 melanoma cells by, at least in part, inhibiting the expression of MITF, followed by decreasing the expression of tyrosinase, TRP-1, and TRP-2.


Assuntos
Azadirachta/química , Limoninas/química , Limoninas/farmacologia , Melanoma Experimental/tratamento farmacológico , Extratos Vegetais/química , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Humanos , Limoninas/isolamento & purificação , Estrutura Molecular , Folhas de Planta/química , Raízes de Plantas/química , Sementes/química , alfa-MSH/farmacologia
3.
Chem Biodivers ; 11(3): 451-68, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24634075

RESUMO

Seventeen limonoids (tetranortriterpenoids), 1-17, including three new compounds, i.e., 17-defurano-17-(2,5-dihydro-2-oxofuran-3-yl)-28-deoxonimbolide (14), 17-defurano-17-(2ξ-2,5-dihydro-2-hydroxy-5-oxofuran-3-yl)-28-deoxonimbolide (15), and 17-defurano-17-(5ξ-2,5-dihydro-5-hydroxy-2-oxofuran-3-yl)-2',3'-dehydrosalannol (17), were isolated from an EtOH extract of the leaf of neem (Azadirachta indica). The structures of the new compounds were elucidated on the basis of extensive spectroscopic analyses and comparison with literature. Upon evaluation of the cytotoxic activities of these compounds against leukemia (HL60), lung (A549), stomach (AZ521), and breast (SK-BR-3) cancer cell lines, seven compounds, i.e., 1-3, 12, 13, 15, and 16, exhibited potent cytotoxicities with IC50 values in the range of 0.1-9.9 µM against one or more cell lines. Among these compounds, cytotoxicity of nimonol (1; IC50 2.8 µM) against HL60 cells was demonstrated to be mainly due to the induction of apoptosis by flow cytometry. Western blot analysis suggested that compound 1 induced apoptosis via both the mitochondrial and death receptor-mediated pathways in HL60 cells. In addition, when compounds 1-17 were evaluated for their inhibitory activities against melanogenesis in B16 melanoma cells, induced with α-melanocyte-stimulating hormone (α-MSH), seven compounds, 1, 2, 4-6, 15, and 16, exhibited inhibitory activities with 31-94% reduction of melanin content at 10 µM concentration with no or low toxicity to the cells (82-112% of cell viability at 10 µM). All 17 compounds were further evaluated for their inhibitory effects against the EpsteinBarr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells.


Assuntos
Azadirachta/química , Limoninas/farmacologia , Limoninas/toxicidade , Animais , Antígenos Virais/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Azadirachta/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/metabolismo , Humanos , Limoninas/química , Limoninas/isolamento & purificação , Melaninas/metabolismo , Camundongos , Conformação Molecular , Folhas de Planta/química , Folhas de Planta/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Ativação Viral/efeitos dos fármacos , alfa-MSH/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA