Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 591(19): 4777-91, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23878366

RESUMO

Left-right asymmetry is a fundamental feature of higher-order brain function; however, the molecular basis of brain asymmetry has remained unclear. We have recently demonstrated asymmetries in hippocampal circuitry resulting from the asymmetrical allocation of NMDA receptor (NMDAR) subunit GluR2 (NR2B) in pyramidal cell synapses. This asymmetrical allocation of 2 subunits affects the properties of NMDARs and generates two populations of synapses, '2-dominant' and '2-non-dominant' synapses, according to the hemispheric origin of presynaptic inputs and cell polarity of the postsynaptic neurone. To identify key regulators for generating asymmetries, we analysed the hippocampus of ß2-microglobulin (ß2m)-deficient mice lacking cell surface expression of major histocompatibility complex class I (MHCI). Although MHCI proteins are well known in the immune system, accumulating evidence indicates that MHCI proteins are expressed in the brain and are required for activity-dependent refinement of neuronal connections and normal synaptic plasticity. We found that ß2m proteins were localised in hippocampal synapses in wild-type mice. NMDA EPSCs in ß2m-deficient hippocampal synapses receiving inputs from both hemispheres showed similar sensitivity to Ro 25-6981, an 2 subunit-selective antagonist, with those in '2-dominant' synapses for both the apical and basal synapses of pyramidal neurones. The structural features of the ß2m-deficient synapse in addition to the relationship between the stimulation frequency and synaptic plasticity were also comparable to those of '2-dominant' synapses. These observations indicate that the ß2m-deficient hippocampus lacks '2-non-dominant' synapses and circuit asymmetries. Our findings provide evidence supporting a critical role of MHCI molecules for generating asymmetries in hippocampal circuitry.


Assuntos
Hipocampo/fisiologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Piramidais/metabolismo , Sinapses/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Hipocampo/citologia , Hipocampo/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Fenóis/farmacologia , Piperidinas/farmacologia , Transporte Proteico , Células Piramidais/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
2.
Curr Biol ; 23(6): 507-14, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23477724

RESUMO

Motivation controls behavior [1]. A variety of food-related behaviors undergo motivational modulation by hunger, satiety, and other states [2-4]. Here we searched for critical satiation factors modulating approach to an odor associated with sugar reward in Drosophila melanogaster. We selectively manipulated different parameters associated with feeding, such as internal glucose levels, and determined which are required for suppressing conditioned odor approach. Surprisingly, glucose levels in the hemolymph, nutritional value, sweetness of the food, and ingested volume (above a minimal threshold) did not influence behavior suppression. Instead, we found that the total osmolarity of ingested food is a critical satiation factor. In parallel, we found that conditioned approach is transiently suppressed by artificial stimulation of adipokinetic hormone (AKH) expressing corpora cardiaca cells, which causes elevation of hemolymph carbohydrate and lipid concentrations [5, 6]. This result implies that a rise in hemolymph osmolarity, without the experience of feeding, is sufficient to satiate conditioned odor approach. AKH stimulation did not affect innate sugar preference, suggesting that multiple satiation signals control different sets of appetitive behaviors.


Assuntos
Drosophila melanogaster/fisiologia , Animais , Condicionamento Clássico , Comportamento Alimentar , Feminino , Glucose/fisiologia , Hormônios de Inseto/metabolismo , Masculino , Motivação , Sistemas Neurossecretores/metabolismo , Valor Nutritivo , Percepção Olfatória , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo , Recompensa , Percepção Gustatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA