Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 77(2): 395-410, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995376

RESUMO

BACKGROUND AND AIMS: Intrahepatic cholangiocarcinoma (ICC) is a deadly but poorly understood disease, and its treatment options are very limited. The aim of this study was to identify the molecular drivers of ICC and search for therapeutic targets. APPROACH AND RESULTS: We performed a Sleeping Beauty transposon-based in vivo insertional mutagenesis screen in liver-specific Pten -deficient mice and identified TNF receptor-related factor 3 ( Traf3 ) as the most significantly mutated gene in murine ICCs in a loss-of-function manner. Liver-specific Traf3 deletion caused marked cholangiocyte overgrowth and spontaneous development of ICC in Pten knockout and KrasG12D mutant mice. Hepatocyte-specific, but not cholangiocyte-specific, Traf3 -deficient and Pten -deficient mice recapitulated these phenotypes. Lineage tracing and single-cell RNA sequencing suggested that these ICCs were derived from hepatocytes through transdifferentiation. TRAF3 and PTEN inhibition induced a transdifferentiation-like phenotype of hepatocyte-lineage cells into proliferative cholangiocytes through NF-κB-inducing kinase (NIK) up-regulation in vitro. Intrahepatic NIK levels were elevated in liver-specific Traf3 -deficient and Pten -deficient mice, and NIK inhibition alleviated cholangiocyte overgrowth. In human ICCs, we identified an inverse correlation between TRAF3 and NIK expression, with low TRAF3 or high NIK expression associated with poor prognosis. Finally, we showed that NIK inhibition by a small molecule inhibitor or gene silencing suppressed the growth of multiple human ICC cells in vitro and ICC xenografts in vivo. CONCLUSIONS: TRAF3 inactivation promotes ICC development through NIK-mediated hepatocyte transdifferentiation. The oncogenic TRAF3-NIK axis may be a potential therapeutic target for ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Camundongos , Animais , Transdução de Sinais/fisiologia , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Transdiferenciação Celular , Hepatócitos/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , NF-kappa B/metabolismo , Quinase Induzida por NF-kappaB
2.
Hepatol Commun ; 6(9): 2474-2487, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35608131

RESUMO

Current anti-hepatitis B virus (HBV) therapies have little effect on covalently closed circular DNA (cccDNA) and fail to eliminate HBV. The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has been reported to directly target cccDNA and exert antiviral effects. In this study, we hypothesized that the inhibition of the DNA repair machinery, which is important for the repair of CRISPR-induced double-strand breaks, may enhance the effect of CRISPR targeting cccDNA, and we investigated the antiviral effect of potential combination therapy. The antiviral effect of CRISPR targeting cccDNA (HBV-CRISPR) was evaluated in HBV-susceptible HepG2-hNTCP-C4 cells expressing Cas9 (HepG2-hNTCP-C4-iCas9) or primary human hepatocytes (PHHs) expressing Cas9. Following HBV infection, HBV-CRISPR reduced cccDNA levels, accompanied by decreases in pregenomic RNA (pgRNA) levels and supernatant HBV DNA, hepatitis B surface antigen and hepatitis B e antigen levels in HepG2-hNTCP-C4-iCas9 cells, and PHHs. HBV-CRISPR induced indel formation in cccDNA and up-regulated poly(adenosine diphosphate ribose) polymerase (PARP) activity in HBV-infected HepG2-hNTCP-C4-iCas9 cells. The suppression of PARP2-Histone PARylation factor 1 (HPF1) (involved in the initial step of DNA repair) with small interfering RNA (siRNA) targeting either PARP2 or HPF1 increased the reduction in pgRNA and cccDNA by HBV-CRISPR in HBV-infected HepG2-hNTCP-C4-iCas9 cells. The suppression of DNA Ligase 4 (LIG4) (essential for nonhomologous end joining [NHEJ]) but not breast cancer susceptibility gene (BRCA) (essential for homologous recombination) enhanced the antiviral effect of HBV-CRISPR in HBV-infected HepG2-hNTCP-C4-iCas9 cells. Finally, the clinically available PARP inhibitor olaparib increased the reductions in pgRNA and cccDNA levels induced by HBV-CRISPR in HBV-infected HepG2-hNTCP-C4-iCas9 cells and PHHs. Conclusion: The suppression of the NHEJ-mediated DNA repair machinery enhances the effect of CRISPR targeting cccDNA. The combination of CRISPR and olaparib may represent a therapy for HBV elimination.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Viral , Vírus da Hepatite B , Antivirais/farmacologia , Reparo do DNA/genética , DNA Circular/genética , Hepatite B/genética , Hepatite B/terapia , Vírus da Hepatite B/genética , Humanos , Proteínas Nucleares/genética
3.
Am J Physiol Gastrointest Liver Physiol ; 320(6): G958-G968, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33787344

RESUMO

Grb2-associated binder 1 (Gab1) is an adaptor protein that is important for intracellular signal transduction by receptor tyrosine kinases that are receptors for various growth factors and plays an important role in rapid liver regeneration after partial hepatectomy and during acute hepatitis. On the other hand, mild liver regeneration is induced in livers of individuals with chronic hepatitis, where hepatocyte apoptosis is persistent; however, the impact of Gab1 on such livers remains unclear. We examined the role of Gab1 in chronic hepatitis. Gab1 knockdown enhanced the decrease in cell viability and apoptosis induced by ABT-737, a Bcl-2/-xL/-w inhibitor, in BNL.CL2 cells, while cell viability and caspase activity were unchanged in the absence of ABT-737. ABT-737 treatment induced Gab1 cleavage to form p35-Gab1. p35-Gab1 was also detected in the livers of mice with hepatocyte-specific Mcl-1 knockout (KO), which causes persistent hepatocyte apoptosis. Gab1 deficiency exacerbated hepatocyte apoptosis in Mcl-1 KO mice with posttranscriptional downregulation of Bcl-XL. In BNL.CL2 cells treated with ABT-737, Gab1 knockdown posttranscriptionally suppressed Bcl-xL expression, and p35-Gab1 overexpression enhanced Bcl-xL expression. Gab1 deficiency in Mcl-1 KO mice activated STAT3 signaling in hepatocytes, increased hepatocyte proliferation, and increased the incidence of liver cancer with the exacerbation of liver fibrosis. In conclusion, Gab1 is cleaved in the presence of apoptotic stimuli and forms p35-Gab1 in hepatocytes. In chronic liver injury, the role of Gab1 in suppressing apoptosis and reducing liver damage, fibrosis, and tumorigenesis is more important than its role in liver regeneration.NEW & NOTEWORTHY Grb2-associated binder 1 (Gab1) is known to contribute to liver regeneration after acute liver injury. However, in chronic liver diseases, Gab1 plays a greater role in suppressing hepatocyte apoptosis than in liver regeneration, resulting in suppression of hepatocyte proliferation, liver fibrosis, and liver carcinogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/genética , Carcinogênese/metabolismo , Hepatócitos/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular , Sobrevivência Celular/genética , Técnicas de Silenciamento de Genes , Hepatócitos/patologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos Knockout , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo
4.
Sci Rep ; 10(1): 15290, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943718

RESUMO

Autophagy, a degradation system, works to maintain cellular homeostasis. However, as the impact of Hepatitis C virus (HCV) infection on hepatocyte autophagy and its effect on HCV replication remain unclear, we examined them. HCV infection suppressed late-stage autophagy and increased Rubicon. siRNA-mediated knockdown of Rubicon promoted autophagy in HCV-infected cells. In Huh-7 cells harbouring the HCV replicon, Rubicon knockdown downregulated the expression of type 1 interferon (IFN)-related genes and upregulated HCV replication. Rubicon overexpression or administration of bafilomycin A1 or chloroquine, an inhibitor of late-stage autophagy, suppressed autophagy and activated the type 1 IFN pathway. On the other hand, Atg7 knockout suppressed early-stage autophagy and did not activate the type 1 IFN pathway. In livers of humanized liver chimeric mice, HCV infection increased Rubicon and enhanced type 1 IFN signalling. Elimination of HCV in the mice reduced the increase in Rubicon due to HCV infection. The expression levels of Rubicon and IFN-stimulated genes in chronic hepatitis C patients were higher than those in non-B, non-C hepatitis patients. HCV infection increased Rubicon and suppressed hepatocyte autophagy, leading to activation of the intracellular immune response. Rubicon induction is involved in HCV replication via activation of the intracellular immune response.


Assuntos
Proteínas Relacionadas à Autofagia/imunologia , Autofagia/imunologia , Hepacivirus/imunologia , Hepatite C Crônica/imunologia , Imunidade Inata/imunologia , Animais , Linhagem Celular Tumoral , Citoplasma/imunologia , Hepatócitos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferon Tipo I/imunologia , Camundongos , Replicon/imunologia , Transdução de Sinais/imunologia , Replicação Viral/imunologia
5.
Hepatology ; 64(6): 1994-2014, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27637015

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide. It encompasses a spectrum ranging from simple steatosis to fatty liver with hepatocellular injury, termed nonalcoholic steatohepatitis. Recent studies have demonstrated hepatic autophagy being impaired in NAFLD. In the present study, we investigated the impact of Rubicon, a Beclin1-interacting negative regulator for autophagosome-lysosome fusion, in the pathogenesis of NAFLD. In HepG2 cells, BNL-CL2 cells, and murine primary hepatocytes, Rubicon was posttranscriptionally up-regulated by supplementation with saturated fatty acid palmitate. Up-regulation of Rubicon was associated with suppression of the late stage of autophagy, as evidenced by accumulation of both LC3-II and p62 expression levels as well as decreased autophagy flux. Its blockade by small interfering RNA attenuated autophagy impairment and reduced palmitate-induced endoplasmic reticulum stress, apoptosis, and lipid accumulation. Rubicon was also up-regulated in association with autophagy impairment in livers of mice fed a high-fat diet (HFD). Hepatocyte-specific Rubicon knockout mice generated by crossing Rubicon floxed mice with albumin-Cre transgenic mice did not produce any phenotypes on a normal diet. In contrast, on an HFD, they displayed significant improvement of both liver steatosis and injury as well as attenuation of both endoplasmic reticulum stress and autophagy impairment in the liver. In humans, liver tissues obtained from patients with NAFLD expressed significantly higher levels of Rubicon than those without steatosis. CONCLUSION: Rubicon is overexpressed and plays a pathogenic role in NAFLD by accelerating hepatocellular lipoapoptosis and lipid accumulation, as well as inhibiting autophagy. Rubicon may be a novel therapeutic target for regulating NAFLD development and progression. (Hepatology 2016;64:1994-2014).


Assuntos
Apoptose , Autofagia , Hepatócitos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Fatores de Tempo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...