Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Biochem Nutr ; 51(2): 143-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22962534

RESUMO

An impaired generation of nitric oxide has been associated with diabetic renal disease. In order to elucidate the underlying molecular mechanisms into how nitric oxide synthesis is impaired in diabetic renal disease, we examined changes in activities and expressions of some renal enzymes involved in nitric oxide production during the development of diabetic nephropathy in type II diabetic Otsuka Long-Evans Tokushima Fatty rats. Ten-week old Otsuka Long-Evans Tokushima Fatty (n = 40) and control Long-Evans Tokushima Otsuka rats (n = 20) were given drinking water containing 20% sucrose to accelerate the development of diabetic nephropathy. Otsuka Long-Evans Tokushima Fatty rats developed diabetic nephropathy in an age-dependent manner. Renal nitric oxide synthase activities in Otsuka Long-Evans Tokushima Fatty rats gradually declined with the progression of diabetic mellitus and were significantly lower than those of age-matched Long-Evans Tokushima Otsuka rats after 22 weeks of age. The lower activities of renal nitric oxide synthase in Otsuka Long-Evans Tokushima Fatty rats were correlated with relatively higher levels of renal free asymmetric dimethylarginine, an endogenous nitric oxide synthase inhibitor, and were also correlated with decreased activities of dimethylargininedimethylaminohydrolase which metabolizes asymmetric dimethylarginine to citrulline. These results imply that dimethylargininedimethylaminohydrolase dysregulation may play an important role in the development of diabetic nephropathy by increasing asymmetric dimethylarginine levels, which leads to inhibition of renal nitric oxide synthesis.

2.
J Lipid Res ; 52(1): 87-97, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20921334

RESUMO

3ß-Hydroxy-5-oxo-5,6-secocholestan-6-al (secosterol-A) and its aldolization product 3ß-hydroxy-5ß-hydroxy-B-norcholestane-6ß-carboxaldehyde (secosterol-B) were recently detected in human atherosclerotic tissues and brain specimens, and they may play pivotal roles in the pathogenesis of atherosclerosis and neurodegenerative diseases. However, as their origin remains unidentified, we examined the formation mechanism, the stability, and the fate of secosterols in vitro and in vivo. About 40% of secosterol-A remained unchanged after 3 h incubation in the FBS-free medium, whereas 20% and 40% were converted to its aldehyde-oxidation product, 3ß-hydroxy-5-oxo-secocholestan-6-oic acid, and secosterol-B, respectively. In the presence of FBS, almost all secosterol-A was converted immediately to these compounds. Secosterol-B in the medium, with and without FBS, was relatively stable, but ∼30% was converted to its aldehyde-oxidation product, 3ß-hydroxy-5ß-hydroxy-B-norcholestane-6-oic acid (secoB-COOH). When neutrophil-like differentiated human leukemia HL-60 (nHL-60) cells activated with PMA were cultured in the FBS-free medium containing cholesterol, significantly increased levels of secosterol-A and its aldehyde-oxidation product, but not secosterol-B, were formed. This secosterol-A formation was decreased in the culture of PMA-activated nHL-60 cells containing several reactive oxygen species (ROS) inhibitors and scavengers or in the culture of PMA-activated neutrophils isolated from myeloperoxidase (MPO)-deficient mice. Our results demonstrate that secoterol-A is formed by an ozone-like oxidant generated with PMA-activated neutrophils through the MPO-dependent mechanism.


Assuntos
Colestanol/análogos & derivados , Colestanonas/metabolismo , Colesterol/metabolismo , Noresteroides/metabolismo , Ozônio/metabolismo , Peroxidase/metabolismo , Secoesteroides/metabolismo , Animais , Diferenciação Celular , Colestanol/metabolismo , Células HL-60 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA