Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 60(6): 2573-86, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25761529

RESUMO

Well-type ionization chambers are used for measuring the source strength of radioactive brachytherapy sources before clinical use. Initially, the well chambers are calibrated against a suitable national standard. For high dose rate (HDR) (192)Ir, this calibration is usually a two-step process. Firstly, the calibration source is traceably calibrated against an air kerma primary standard in terms of either reference air kerma rate or air kerma strength. The calibrated (192)Ir source is then used to calibrate the secondary standard well-type ionization chamber. Calibration laboratories are usually only equipped with one type of HDR (192)Ir source. If the clinical source type is different from that used for the calibration of the well chamber at the standards laboratory, a source geometry factor, k(sg), is required to correct the calibration coefficient for any change of the well chamber response due to geometric differences between the sources. In this work we present source geometry factors for six different HDR (192)Ir brachytherapy sources which have been determined using Monte Carlo techniques for a specific ionization chamber, the Standard Imaging HDR 1000 Plus well chamber with a type 70010 HDR iridium source holder. The calculated correction factors were normalized to the old and new type of calibration source used at the National Physical Laboratory. With the old Nucletron microSelectron-v1 (classic) HDR (192)Ir calibration source, ksg was found to be in the range 0.983 to 0.999 and with the new Isodose Control HDR (192)Ir Flexisource k(sg) was found to be in the range 0.987 to 1.004 with a relative uncertainty of 0.4% (k = 2). Source geometry factors for different combinations of calibration sources, clinical sources, well chambers and associated source holders, can be calculated with the formalism discussed in this paper.


Assuntos
Algoritmos , Braquiterapia/instrumentação , Radioisótopos de Irídio/uso terapêutico , Doses de Radiação , Braquiterapia/métodos , Calibragem , Humanos
2.
Phys Med Biol ; 60(3): 1087-105, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25586026

RESUMO

Empirical fits are developed for depth-compensated wall- and cavity-replacement perturbations in the PTW Roos 34001 and IBA / Scanditronix NACP-02 parallel-plate ionisation chambers, for electron beam qualities from 4 to 22 MeV for depths up to approximately 1.1 × R50,D. These are based on calculations using the Monte Carlo radiation transport code EGSnrc and its user codes with a full simulation of the linac treatment head modelled using BEAMnrc. These fits are used with calculated restricted stopping-power ratios between air and water to match measured depth-dose distributions in water from an Elekta Synergy clinical linear accelerator at the UK National Physical Laboratory. Results compare well with those from recent publications and from the IPEM 2003 electron beam radiotherapy Code of Practice.


Assuntos
Ar , Simulação por Computador , Elétrons , Imagens de Fantasmas , Radiometria/instrumentação , Radiometria/normas , Água/química , Humanos , Modelos Teóricos , Método de Monte Carlo , Aceleradores de Partículas , Doses de Radiação
4.
Phys Med Biol ; 47(3): 441-54, 2002 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-11858210

RESUMO

The National Physical Laboratory (NPL) provides a high-energy photon calibration service using 4-19 MV x-rays and 60Co gamma-radiation for secondary standard dosemeters in terms of absorbed dose to water. The primary standard used for this service is a graphite calorimeter and so absorbed dose calibrations must be converted from graphite to water. The conversion factors currently in use were determined prior to the launch of this service in 1988. Since then, it has been found that the differences in inherent filtration between the NPL LINAC and typical clinical machines are large enough to affect absorbed dose calibrations and, since 1992, calibrations have been performed in heavily filtered qualities. The conversion factors for heavily filtered qualities were determined by interpolation and extrapolation of lightly filtered results as a function of tissue phantom ratio 20,10 (TPR20,10). This paper aims to evaluate these factors for all mega-voltage photon energies provided by the NPL LINAC for both lightly and heavily filtered qualities and for 60Co y-radiation in two ways. The first method involves the use of the photon fluence-scaling theorem. This states that if two blocks of different material are irradiated by the same photon beam, and if all dimensions are scaled in the inverse ratio of the electron densities of the two media, then, assuming that all photon interactions occur by Compton scatter the photon attenuation and scatter factors at corresponding scaled points of measurement in the phantom will be identical. The second method involves making in-phantom measurements of chamber response at a constant target-chamber distance. Monte Carlo techniques are then used to determine the corresponding dose to the medium in order to determine the chamber calibration factor directly. Values of the ratio of absorbed dose calibration factors in water and in graphite determined in these two ways agree with each other to within 0.2% (1sigma uncertainty). The best fit to both sets of results agrees with values determined in previous work to within 0.3% (1sigma uncertainty). It is found that the conversion factor is not sensitive to beam filtration.


Assuntos
Grafite , Fótons , Radiometria/métodos , Água , Calibragem , Radioisótopos de Cobalto , Elétrons , Método de Monte Carlo , Imagens de Fantasmas , Raios X
5.
Phys Med Biol ; 46(11): N245-52, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11720365

RESUMO

The National Physical Laboratory provides a megavoltage photon calibration service for secondary standard dosemeter systems in terms of absorbed dose to water using a graphite calorimeter. It is therefore necessary to evaluate factors to convert absorbed dose calibrations from graphite to water for all energies provided by the calibration service. A portable graphite calorimeter is currently being developed at the NPL for measuring absorbed dose in the radiotherapy clinic (McEwen and Duane 2000 Phys. Med. Biol. 45 3675-91) and so factors are now required to be able to convert absorbed dose calibrations from graphite to water in the clinical beam. The factors used to convert absorbed dose calibrations from graphite to water which are currently in use at the NPL were determined in previous work by Burns and Dale (1990 NPL Report RSA (EXT) 7) for all photon energies provided by the high-energy x-ray calibration service. Nutbrown et al (2000 NPL Report CIRM 37) have since re-evaluated these conversion factors using two methods. In this paper the factors to convert absorbed dose calibrations from graphite to water for two clinical beams from a Philips SL15 LINAC (6 and 10 MV) that were determined using both methods are presented and compared with values for the NPL heavily filtered beams. The results from the measurements made on the clinical machines using both methods agree within 1sigma uncertainty. The weighted average of these results agrees to within 1sigma uncertainty with results given by Burns and Dale and Nutbrown et al. The uncertainty in the determination of the graphite to water conversion factors at the 1sigma level is estimated to be 0.4%.


Assuntos
Aceleradores de Partículas/instrumentação , Calibragem , Grafite , Método de Monte Carlo , Imagens de Fantasmas , Radiometria , Água , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...