Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Imaging Radiat Oncol ; 29: 100543, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38390588

RESUMO

Background and purpose: Multi-leaf collimators (MLCs) with tilted leaf sides have a complex transmission behaviour that is not easily matched by radiotherapy treatment planning systems (TPSs). We sought to develop an MLC model that can accurately match test fields and clinically relevant plans at different centres. Materials and methods: Two new MLC models were developed and evaluated within a research version of a commercial TPS. Prototype I used adjusted-constant transmissions and Prototype II used variable transmissions at the tongue-and-groove and leaf-tip regions. Three different centres evaluated these prototypes for a tilted MLC and compared them with their initial MLC model using test fields and patient-specific quality-assurance measurements of clinically relevant plans. For the latter, gamma passing rates (GPR) at 2 %/2mm were recorded. Results: For the prototypes the same set of MLC parameters could be used at all centres, with only a slight adjustment of the offset parameter. For centres A and C, average GPR were >95 % and within 0.5 % GPR difference between the standard, and prototype models. In center B, prototypes I and II improved the agreement in clinically relevant plans, with an increase in GPR of 2.3 % ± 0.8 % and 3.0 ± 0.8 %, respectively. Conclusions: The prototype MLC models were either similar or superior to the initial MLC model, and simpler to configure because fewer trade-offs were required. Prototype I performed comparably to the more sophisticated Prototype II and its configuration can be easily standardized, which can be useful to reduce variability and improve safety in clinical practice.

2.
Phys Imaging Radiat Oncol ; 28: 100506, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38045641

RESUMO

Background and purpose: Accurate dosimetry in Ultra-High Dose Rate (UHDR) beams is challenging because high levels of ion recombination occur within ionisation chambers used as reference dosimeters. A Small-body Portable Graphite Calorimeter (SPGC) exhibiting a dose-rate independent response was built to offer reduced uncertainty on secondary standard dosimetry in UHDR regimes. The aim of this study was to quantify the effect of the geometry and material properties of the device on the dose measurement. Materials and methods: A detailed model of the SPGC was built in the Monte Carlo code TOPAS (v3.6.1) to derive the impurity and gap correction factors, kimp and kgap. A dose conversion factor, DwMC/DgMC, was also calculated using FLUKA (v2021.2.0). These factors convert the average dose to its graphite core to the dose-to-water for a 249.7 MeV mono-energetic spot-scanned clinical proton beam. The effect of the surrounding Styrofoam on the dose measurement was examined in the simulations by substituting it for graphite. Results: The kimp and kgap correction factors were 0.9993 ± 0.0002 and 1.0000 ± 0.0001, respectively when the Styrofoam was not substituted, and 1.0037 ± 0.0002 and 0.9999 ± 0.0001, respectively when substituted for graphite. The dose conversion factor was calculated to be 1.0806 ± 0.0001. All uncertainties are Type A. Conclusions: Impurity and gap correction factors, and the dose conversion factor were calculated for the SPGC in a FLASH proton beam. Separating out the effect of scatter from Styrofoam insulation showed this as the dominating correction factor, amounting to 1.0043 ± 0.0002.

3.
Sci Rep ; 13(1): 2054, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739297

RESUMO

A paradigm shift is occurring in clinical oncology exploiting the recent discovery that short pulses of ultra-high dose rate (UHDR) radiation-FLASH radiotherapy-can significantly spare healthy tissues whilst still being at least as effective in curing cancer as radiotherapy at conventional dose rates. These properties promise reduced post-treatment complications, whilst improving patient access to proton beam radiotherapy and reducing costs. However, accurate dosimetry at UHDR is extremely complicated. This work presents measurements performed with a primary-standard proton calorimeter and derivation of the required correction factors needed to determine absolute dose for FLASH proton beam radiotherapy with an uncertainty of 0.9% (1[Formula: see text]), in line with that of conventional treatments. The establishment of a primary standard for FLASH proton radiotherapy improves accuracy and consistency of the dose delivered and is crucial for the safe implementation of clinical trials, and beyond, for this new treatment modality.


Assuntos
Neoplasias , Terapia com Prótons , Humanos , Prótons , Dosagem Radioterapêutica , Radiometria , Neoplasias/radioterapia
4.
Br J Radiol ; 96(1141): 20220638, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36259518

RESUMO

OBJECTIVES: Ultra-high pulse dose rate modalities present significant dosimetry challenges for ionisation chambers due to significant ion recombination. Conversely, calorimeters are ideally suited to measure high dose, short duration dose deliveries and this work describes a simple calorimeter as an alternative dosemeter for use in the clinic. METHODS: Calorimeters were constructed featuring a disc-shaped core and single sensing thermistor encased in a 3D-printed body shaped like a Roos ionisation chamber. The thermistor forms one arm of a DC Wheatstone bridge, connected to a standard DMM. The bridge-out-of-balance voltage was calibrated in terms of temperature. A graphite-core calorimeter was calibrated in terms of absorbed dose to water (J/kg) in Co-60 and conventional 6, 10 and 15 MV X-rays. Similarly, an aluminium-core calorimeter was calibrated in a conventional 20 MeV electron beam and tested in a research high dose per pulse 6 MeV electron beam. RESULTS: Calorimeters were successfully calibrated in terms of absorbed dose to water in conventional radiotherapy beams at approximately 5 Gy/min with an estimated uncertainty of ±2-2.5% (k = 2), and performed similarly in a 6 MeV electron beam delivering approximately 180 Gy/s. CONCLUSIONS: A simple, low-cost calorimeter traceably calibrated to existing primary standards of absorbed dose could be used as a secondary standard for dosimetry for ultra-high pulse dose rates in the clinic. ADVANCES IN KNOWLEDGE: Secondary standard calorimeters for routine measurements are not available commercially; this work presents the basis of a simple, low-cost solution for reference dosimetry for ultra-high pulse dose rate beams.


Assuntos
Dosímetros de Radiação , Radiometria , Humanos , Calorimetria , Raios X , Água
5.
Phys Med Biol ; 65(24): 245008, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32674077

RESUMO

In MRgRT, dosimetry measurements are performed in the presence of magnetic fields. For high-resolution measurements, small-cavity ionization chambers are required. While Monte Carlo simulations are essential to determine dosimetry correction factors, models of small-chambers require careful validation with experimental measurements. The aim of this study is to characterize small-cavity chamber response coupled to magnetic fields. Small-cavity chambers (PTW31010, PTW31016, PTW31021 and PTW3022) are irradiated by a 6 MV photon beam for 9 magnetic field strengths between -1.5 T and +1.5 T. The chamber axis is orientated either parallel or perpendicular to the irradiation beam, with the magnetic field always perpendicular to the beam. MC simulations are performed in EGSnrc. The sensitive volume of the chambers is reduced to account for the inefficiency adjacent to the guard electrode (dead volume) based on COMSOL calculations of electric potentials. The magnetic field affects the chamber response by up to 4.1% and 4.5% in the parallel and perpendicular orientations, respectively, compared to no magnetic field. The maximal difference in dose response between experiments and simulations is up to 6.1% and 4.5% for parallel and perpendicular orientation, respectively. When the dead volume is removed, which accounts for the 15%-23% of the nominal volume, the difference, in most cases, is within the stated uncertainties. Nevertheless, for a particular chamber, the reduced nominal volume barely improved the agreement between the experimental and calculated relative response (4.53% to 4.13%). This disagreement may be due to the imperfect chamber geometry model, as was found from microCT images. A detailed uncertainty analysis is presented. The characterization of small-cavity ion chamber response coupled to magnetic fields is complex. Small differences between real and model chamber geometry that normally would be insignificant become an issue in the presence of magnetic fields. Accurate characterization of the nominal volume is essential for small-cavity ion chamber modelling.


Assuntos
Campos Magnéticos , Fótons , Radiometria/instrumentação , Eletricidade , Humanos , Método de Monte Carlo , Incerteza
6.
Phys Med Biol ; 65(11): 115001, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32191920

RESUMO

Reference dosimetry in the presence of a strong magnetic field is challenging. Ionisation chambers have shown to be strongly affected by magnetic fields. There is a need for robust and stable detectors in MRI-guided radiotherapy (MRIgRT). This study investigates the behaviour of the alanine dosimeter in magnetic fields and assesses its suitability to act as a reference detector in MRIgRT. Alanine pellets were loaded in a waterproof holder, placed in an electromagnet and irradiated by 60Co and 6 MV and 8 MV linac beams over a range of magnetic flux densities. Monte Carlo simulations were performed to calculate the absorbed dose, to water and to alanine, with and without magnetic fields. Combining measurements with simulations, the effect of magnetic fields on alanine response was quantified and a correction factor for the presence of magnetic fields on alanine was determined. This study finds that the response of alanine to ionising radiation is modified when the irradiation is in the presence of a magnetic field. The effect is energy independent and may increase the alanine/electron paramagnetic resonance (EPR) signal by 0.2% at 0.35 T and 0.7% at 1.5 T. In alanine dosimetry for MRIgRT, this effect, if left uncorrected, would lead to an overestimate of dose. Accordingly, a correction factor, [Formula: see text], is defined. Values are obtained for this correction as a function of magnetic flux density, with a standard uncertainty which depends on the magnetic field and is 0.6% or less. The strong magnetic field has a measurable effect on alanine dosimetry. For alanine which is used to measure absorbed dose to water in a strong magnetic field, but which has been calibrated in the absence of a magnetic field, a small correction to the reported dose is required. With the inclusion of this correction, alanine/EPR is a suitable reference dosimeter for measurements in MRIgRT.


Assuntos
Alanina , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Dosímetros de Radiação/normas , Radioterapia/métodos , Calibragem , Radioisótopos de Cobalto , Método de Monte Carlo , Aceleradores de Partículas , Radiometria/métodos , Radioterapia/instrumentação
7.
Phys Med Biol ; 63(5): 05NT01, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29393066

RESUMO

Dosimetric quality assurance (QA) of the new Elekta Unity (MR-linac) will differ from the QA performed of a conventional linac due to the constant magnetic field, which creates an electron return effect (ERE). In this work we aim to validate PRESAGE® dosimetry in a transverse magnetic field, and assess its use to validate the research version of the Monaco TPS of the MR-linac. Cylindrical samples of PRESAGE® 3D dosimeter separated by an air gap were irradiated with a cobalt-60 unit, while placed between the poles of an electromagnet at 0.5 T and 1.5 T. This set-up was simulated in EGSnrc/Cavity Monte Carlo (MC) code and relative dose distributions were compared with measurements using 1D and 2D gamma criteria of 3% and 1.5 mm. The irradiation conditions were adapted for the MR-linac and compared with Monaco TPS simulations. Measured and EGSnrc/Cavity simulated profiles showed good agreement with a gamma passing rate of 99.9% for 0.5 T and 99.8% for 1.5 T. Measurements on the MR-linac also compared well with Monaco TPS simulations, with a gamma passing rate of 98.4% at 1.5 T. Results demonstrated that PRESAGE® can accurately measure dose and detect the ERE, encouraging its use as a QA tool to validate the Monaco TPS of the MR-linac for clinically relevant dose distributions at tissue-air boundaries.


Assuntos
Campos Magnéticos , Método de Monte Carlo , Imagens de Fantasmas , Dosímetros de Radiação/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Raios gama , Humanos , Aceleradores de Partículas , Dosagem Radioterapêutica
8.
Sex Abuse ; 29(6): 563-591, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26556784

RESUMO

Transcripts of chat logs of naturally occurring, sexually exploitative interactions between offenders and victims that took place via Internet communication platforms were analyzed. The aim of the study was to examine the modus operandi of offenders in such interactions, with particular focus on the specific strategies they use to engage victims, including discursive tactics. We also aimed to ascertain offenders' underlying motivation and function of engagement in online interactions with children. Five cases, comprising 29 transcripts, were analyzed using qualitative thematic analysis with a discursive focus. In addition to this, police reports were reviewed for descriptive and case-specific information. Offenders were men aged between 27 and 52 years ( M = 33.6, SD = 5.6), and the number of children they communicated with ranged from one to 12 ( M = 4.6, SD = 4.5). Victims were aged between 11 and 15 ( M = 13.00, SD = 1.2), and were both female and male. Three offenders committed online sexual offenses, and two offenders committed contact sexual offenses in addition to online sexual offenses. The analysis of transcripts revealed that interactions between offenders and victims were of a highly sexual nature, and that offenders used a range of manipulative strategies to engage victims and achieve their compliance. It appeared that offenders engaged in such interactions for the purpose of sexual arousal and gratification, as well as fantasy fulfillment.


Assuntos
Abuso Sexual na Infância/psicologia , Criminosos/psicologia , Internet , Pedofilia/psicologia , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pesquisa Qualitativa , Comportamento Sexual/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...