Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 8(1): 1, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33384412

RESUMO

Postharvest waste and loss of horticultural crops exacerbates the agricultural problems facing humankind and will continue to do so in the next decade. Fruits and vegetables provide us with a vast spectrum of healthful nutrients, and along with ornamentals, enrich our lives with a wide array of pleasant sensory experiences. These commodities are, however, highly perishable. Approximately 33% of the produce that is harvested is never consumed since these products naturally have a short shelf-life, which leads to postharvest loss and waste. This loss, however, could be reduced by breeding new crops that retain desirable traits and accrue less damage over the course of long supply chains. New gene-editing tools promise the rapid and inexpensive production of new varieties of crops with enhanced traits more easily than was previously possible. Our aim in this review is to critically evaluate gene editing as a tool to modify the biological pathways that determine fruit, vegetable, and ornamental quality, especially after storage. We provide brief and accessible overviews of both the CRISPR-Cas9 method and the produce supply chain. Next, we survey the literature of the last 30 years, to catalog genes that control or regulate quality or senescence traits that are "ripe" for gene editing. Finally, we discuss barriers to implementing gene editing for postharvest, from the limitations of experimental methods to international policy. We conclude that in spite of the hurdles that remain, gene editing of produce and ornamentals will likely have a measurable impact on reducing postharvest loss and waste in the next 5-10 years.

2.
BMC Cell Biol ; 18(1): 11, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28125974

RESUMO

BACKGROUND: To cause an economically important blast disease on rice, the filamentous fungus Magnaporthe oryzae forms a specialized infection structure, called an appressorium, to penetrate host cells. Once inside host cells, the fungus produces a filamentous primary hypha that differentiates into multicellular bulbous invasive hyphae (IH), which are surrounded by a host-derived membrane. These hyphae secrete cytoplasmic effectors that enter host cells presumably via the biotrophic interfacial complex (BIC). The first IH cell, also known as the side BIC-associated cell, is a specialized effector-secreting cell essential for a successful infection. This study aims to determine cellular processes that lead to the development of this effector-secreting first IH cell inside susceptible rice cells. RESULTS: Using live-cell confocal imaging, we determined a series of cellular events by which the appressorium gives rise to the first IH cell in live rice cells. The filamentous primary hypha extended from the appressorium and underwent asymmetric swelling at its apex. The single nucleus in the appressorium divided, and then one nucleus migrated into the swollen apex. Septation occurred in the filamentous region of the primary hypha, establishing the first IH cell. The tip BIC that was initially associated with the primary hypha became the side BIC on the swollen apex prior to nuclear division in the appressorium. The average distance between the early side BIC and the nearest nucleus in the appressorium was estimated to be more than 32 µm. These results suggest an unknown mechanism by which effectors that are expressed in the appressorium are transported through the primary hypha for their secretion into the distantly located BIC. When M. oryzae was inoculated on heat-killed rice cells, penetration proceeded as normal, but there was no differentiation of a bulbous IH cell, suggesting its specialization for establishment of biotrophic infection. CONCLUSIONS: Our studies reveal cellular dynamics associated with the development of the effector-secreting first IH cell. Our data raise new mechanistic questions concerning hyphal differentiation in response to host environmental cues and effector trafficking from the appressorium to the BIC.


Assuntos
Núcleo Celular/metabolismo , Magnaporthe/citologia , Oryza/microbiologia , Células Vegetais/microbiologia , Morte Celular , Divisão do Núcleo Celular , Temperatura Alta , Hifas/citologia , Mitose , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...