Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 79(6): 2221-9, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17288407

RESUMO

Gold nanoparticles have shown great promise as therapeutics, therapeutic delivery vectors, and intracellular imaging agents. For many biomedical applications, selective cell and nuclear targeting are desirable, and these remain a significant practical challenge in the use of nanoparticles in vivo. This challenge is being addressed by the incorporation of cell-targeting peptides or antibodies onto the nanoparticle surface, modifications that frequently compromise nanoparticle stability in high ionic strength biological media. We describe herein the assembly of poly(ethylene glycol) (PEG) and mixed peptide/PEG monolayers on gold nanoparticle surfaces. The stability of the resulting bioconjugates in high ionic strength media was characterized as a function of nanoparticle size, PEG length, and monolayer composition. In total, three different thiol-modified PEGs (average molecular weight (MW), 900, 1500, and 5000 g mol-1), four particle diameters (10, 20, 30, and 60 nm), and two cell-targeting peptides were explored. We found that nanoparticle stability increased with increasing PEG length, decreasing nanoparticle diameter, and increasing PEG mole fraction. The order of assembly also played a role in nanoparticle stability. Mixed monolayers prepared via the sequential addition of PEG followed by peptide were more stable than particles prepared via simultaneous co-adsorption. Finally, the ability of nanoparticles modified with mixed PEG/RME (RME = receptor-mediated endocytosis) peptide monolayers to target the cytoplasm of HeLa cells was quantified using inductively coupled plasma optical emission spectrometry (ICP-OES). Although it was anticipated that the MW 5000 g mol-1 PEG would sterically block peptides from access to the cell membrane compared to the MW 900 PEG, nanoparticles modified with mixed peptide/PEG 5000 monolayers were internalized as efficiently as nanoparticles containing mixed peptide/PEG 900 monolayers. These studies can provide useful cues in the assembly of stable peptide/gold nanoparticle bioconjugates capable of being internalized into cells.


Assuntos
Ouro/química , Nanopartículas/química , Peptídeos/química , Polietilenoglicóis/química , Sequência de Aminoácidos , Endocitose , Células HeLa , Humanos , Estrutura Molecular , Peso Molecular , Peptídeos/síntese química , Espectrometria de Fluorescência , Compostos de Sulfidrila/química
2.
Langmuir ; 22(13): 5862-6, 2006 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-16768520

RESUMO

RNA catalysts for the shape-controlled synthesis of Pd particles from the precursor complex trisdibenzylideneacetone dipalladium ([Pd2(DBA)3] were recently discovered in our laboratory (J. Am. Chem. Soc. 2005, 127, 17814-17818). In the work described here, RNA codes for hexagonal Pd platelets and Pd cubes were covalently immobilized on gold surfaces and evaluated for their activity toward particle synthesis. When coupled to gold via oligoethylene glycol linkers, both RNA sequences were able to catalyze the formation of Pd particles with the same shape control previously observed in solution. For low surface coverages, the average distance between RNA molecules on the surface was estimated at ca. 300 nm, yet large (e.g., dimensions of hundreds of nanometers) Pd hexagons and cubes still formed. This surprising result suggests that a single RNA molecule may be sufficient for nucleating and controlling the shapes of these particles. Finally, the use of surface-bound RNA as a tool for directing the orthogonal synthesis of materials on surfaces was demonstrated. Patterning the RNA code for Pd hexagons next to the code for Pd cubes, followed by incubation in a solution containing [Pd2(DBA)3], resulted in the spontaneous formation of spatially distinct spots of hexagonal and cubic particles.


Assuntos
Nanopartículas Metálicas/química , Paládio/química , RNA Catalítico/química , Sequência de Bases , Ouro/química , Técnicas In Vitro , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Conformação de Ácido Nucleico , RNA Catalítico/metabolismo , Propriedades de Superfície
3.
Bioconjug Chem ; 15(3): 482-90, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15149175

RESUMO

Gold nanoparticles modified with nuclear localization peptides were synthesized and evaluated for their subcellular distribution in HeLa human cervical epithelium cells, 3T3/NIH murine fibroblastoma cells, and HepG2 human hepatocarcinoma cells. Video-enhanced color differential interference contrast microscopy and transmission electron microscopy indicated that transport of nanoparticles into the cytoplasm and nucleus depends on peptide sequence and cell line. Recently, the ability of certain peptides, called protein transduction domains (PTDs), to transclocate cell and nuclear membranes in a receptor- and temperature-independent manner has been questioned (see for example, Lundberg, M.; Wikstrom, S.; Johansson, M. (2003) Mol. Ther. 8, 143-150). We have evaluated the cellular trajectory of gold nanoparticles carrying the PTD from HIV Tat protein. Our observations were that (1) the conjugates did not enter the nucleus of 3T3/NIH or HepG2 cells, and (2) cellular uptake of Tat PTD peptide-gold nanoparticle conjugates was temperature dependent, suggesting an endosomal pathway of uptake. Gold nanoparticles modified with the adenovirus nuclear localization signal and the integrin binding domain also entered cells via an energy-dependent mechanism, but in contrast to the Tat PTD, these signals triggered nuclear uptake of nanoparticles in HeLa and HepG2 cell lines.


Assuntos
Núcleo Celular/metabolismo , Ouro/farmacocinética , Sinais de Localização Nuclear/metabolismo , Peptídeos/farmacocinética , Células 3T3 , Animais , Transporte Biológico Ativo/fisiologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Produtos do Gene tat/química , Ouro/química , Células HeLa , Humanos , Substâncias Macromoleculares , Camundongos , Sinais de Localização Nuclear/efeitos dos fármacos , Peptídeos/química , Estrutura Terciária de Proteína/fisiologia , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacocinética , Temperatura , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA