Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Magn Reson Med Sci ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494702

RESUMO

PURPOSE: We present a novel algorithm for the automated detection of cerebral microbleeds (CMBs) on 2D gradient-recalled echo T2* weighted images (T2*WIs). This approach combines a morphology filter bank with a convolutional neural network (CNN) to improve the efficiency of CMB detection. A technical evaluation was performed to ascertain the algorithm's accuracy. METHODS: In this retrospective study, 60 patients with CMBs on T2*WIs were included. The gold standard was set by three neuroradiologists based on the Microbleed Anatomic Rating Scale guidelines. Images with CMBs were extracted from the training dataset comprising 30 cases using a morphology filter bank, and false positives (FPs) were removed based on the threshold of size and signal intensity. The extracted images were used to train the CNN (Vgg16). To determine the effectiveness of the morphology filter bank, the outcomes of the following two methods for detecting CMBs from the 30-case test dataset were compared: (a) employing the morphology filter bank and additional FP removal and (b) comprehensive detection without filters. The trained CNN processed both sets of initial CMB candidates, and the final CMB candidates were compared with the gold standard. The sensitivity and FPs per patient of both methods were compared. RESULTS: After CNN processing, the morphology-filter-bank-based method had a 95.0% sensitivity with 4.37 FPs per patient. In contrast, the comprehensive method had a 97.5% sensitivity with 25.87 FPs per patient. CONCLUSION: Through effective CMB candidate refinement with a morphology filter bank and FP removal with a CNN, we achieved a high CMB detection rate and low FP count. Combining a CNN and morphology filter bank may facilitate the accurate automated detection of CMBs on T2*WIs.

2.
Magn Reson Med Sci ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38311395

RESUMO

Gadoxetic acid is both an extracellular- and hepatocyte-specific contrast agent. Signals from the extracellular space may lower the contrast between lesions and the surrounding hepatic parenchyma. To improve hepatocyte-specific enhancement, we developed an intracellular contrast-enhancing fat-saturated T1-weighted gradient-echo nature of the sequence (ICE-TIGRE). It incorporates the motion-sensitized driven-equilibrium (MSDE) pulse to suppress signals from the blood flow. We investigated the optimal ICE-TIGRE scanning parameters, i.e., the order of the MSDE and the fat saturation pulses, the duration time, and the b value of the MSDE pulse, using a phantom and three volunteers without applying gadoxetic acid. ICE-TIGRE successfully increased the contrast between the liver parenchyma and the portal vein. To maintain fat saturation, the preparation pulse order should be MSDE-fat saturation. A duration time of 21 ms should be applied to minimize the effect of the T2 factor on the T1 contrast, and a b value of 60 s/mm2 should be applied to maximize the diffusion contrast for ICE-TIGRE with the imaging system used in this study.

3.
Magn Reson Med Sci ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38417909

RESUMO

A chemically fixed Carnegie stage 23 (approximately 56 days of gestation) human embryo specimen was imaged using 3D spin-echo and gradient-echo sequences in a static magnetic field strength of 4.74T, and a quantitative susceptibility map was calculated using the 3D gradient-echo image. The acquired 3D microscopic images (90 µm cube voxel size) clarified the relationship between R2 (transverse relaxation rate), R2* (apparent transverse relaxation rate), and magnetic susceptibility in the heart, liver, kidney, and spinal cord. The results suggested that the R2* and magnetic susceptibility in each tissue were probably due to paramagnetic iron ions originating from erythrocytes. The large R2* (~130 s-1) and magnetic susceptibility (~0.122 ppm) in the liver were attributed to its hemopoietic function. A large magnetic susceptibility (~0.116 ppm) was also observed in the spinal cord, but we conclude that more detailed future studies are needed.

4.
Magn Reson Imaging ; 103: 192-197, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37558171

RESUMO

PURPOSE: To develop a method for predicting amyloid positron emission tomography (PET) positivity based on multiple regression analysis of quantitative susceptibility mapping (QSM). MATERIALS AND METHODS: This prospective study included 39 patients with suspected dementia from four centers. QSM images were obtained through a 3-T, three-dimensional radiofrequency-spoiled gradient-echo sequence with multiple echoes. The cortical standard uptake value ratio (SUVR) was obtained using amyloid PET with 18F-flutemetamol, and susceptibility in the brain regions was obtained using QSM. A multiple regression model to predict cortical SUVR was constructed based on susceptibilities in multiple brain regions, with the constraint that cortical SUVR and susceptibility were positively correlated. The discrimination performance of the Aß-positive and Aß-negative cohorts was evaluated based on the predicted SUVR using the area under the receiver operating characteristic curve (AUC) and Mann-Whitney U test. RESULTS: The correlation coefficients between true and predicted SUVR were increased by incorporating the constraint, and the AUC to discriminate between the Aß-positive and Aß-negative cohorts reached to 0.79 (p < 0.01). CONCLUSION: These preliminary results suggest that a QSM-based multiple regression model can predict amyloid PET positivity with fair accuracy.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Estudos Prospectivos , Tomografia por Emissão de Pósitrons/métodos , Amiloide/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Análise de Regressão , Peptídeos beta-Amiloides/metabolismo
5.
Magn Reson Med Sci ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37518672

RESUMO

PURPOSE: Deep neural networks (DNNs) for MRI reconstruction often require large datasets for training. Still, in clinical settings, the domains of datasets are diverse, and how robust DNNs are to domain differences between training and testing datasets has been an open question. Here, we numerically and clinically evaluate the generalization of the reconstruction networks across various domains under clinically practical conditions and provide practical guidance on what points to consider when selecting models for clinical application. METHODS: We compare the reconstruction performance between four network models: U-Net, the deep cascade of convolutional neural networks (DC-CNNs), Hybrid Cascade, and variational network (VarNet). We used the public multicoil dataset fastMRI for training and testing and performed a single-domain test, where the domains of the dataset used for training and testing were the same, and cross-domain tests, where the source and target domains were different. We conducted a single-domain test (Experiment 1) and cross-domain tests (Experiments 2-4), focusing on six factors (the number of images, sampling pattern, acceleration factor, noise level, contrast, and anatomical structure) both numerically and clinically. RESULTS: U-Net had lower performance than the three model-based networks and was less robust to domain shifts between training and testing datasets. VarNet had the highest performance and robustness among the three model-based networks, followed by Hybrid Cascade and DC-CNN. Especially, VarNet showed high performance even with a limited number of training images (200 images/10 cases). U-Net was more robust to domain shifts concerning noise level than the other model-based networks. Hybrid Cascade showed slightly better performance and robustness than DC-CNN, except for robustness to noise-level domain shifts. The results of the clinical evaluations generally agreed with the results of the quantitative metrics. CONCLUSION: In this study, we numerically and clinically evaluated the robustness of the publicly available networks using the multicoil data. Therefore, this study provided practical guidance for clinical applications.

6.
Magn Reson Med Sci ; 22(4): 497-514, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372397

RESUMO

PURPOSE: Quantitative susceptibility mapping (QSM) is useful for obtaining biological information. To calculate susceptibility distribution, it is necessary to calculate the local field caused by the differences of susceptibility between the tissues. The local field can be obtained by removing a background field from a total field acquired by MR phase image. Conventional approaches based on spherical mean value (SMV) filtering, which are widely used for background field calculations, fail to calculate the background field of the brain surface region corresponding to the radius of the SMV kernel, and consequently cannot calculate the QSM of the brain surface region. Accordingly, a new method calculating the local field by expansively removing the background field is proposed for whole brain QSM. METHODS: The proposed method consists of two steps. First, the background field of the brain surface is calculated from the total field using a locally polynomial approximation of spherical harmonics. Second, the whole brain local field is calculated by SMV filtering with a constraint term of the background field of the brain surface. The parameters of the approximation were optimized to reduce calculation errors through simulations using both a numerical phantom and a measured human brain. Performance of the proposed method with the optimized parameters was quantitatively and visually compared with conventional methods in an experiment of five healthy volunteers. RESULTS: The proposed method showed the accurate local field over the expanded brain region in the simulation studies. It also showed consistent QSM with conventional methods inside of the brain surface and showed clear vein structures on the brain surface. CONCLUSION: The proposed method enables accurate calculation of whole brain QSM without eroding the brain surface region while maintaining same values inside of the brain surface as the conventional methods.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Cabeça , Algoritmos
7.
Magn Reson Med Sci ; 22(4): 459-468, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908880

RESUMO

PURPOSE: MR parameter mapping is a technique that obtains distributions of parameters such as relaxation time and proton density (PD) and is starting to be used for disease quantification in clinical diagnoses. Quantitative susceptibility mapping is also promising for the early diagnosis of brain disorders such as degenerative neurological disorders. Therefore, we developed an MR quantitative parameter mapping (QPM) method to map four tissue-related parameters (T1, T2*, PD, and susceptibility) and B1 simultaneously by using a 3D partially RF-spoiled gradient echo (pRSGE). We verified the accuracy and repeatability of QPM in phantom and volunteer experiments. METHODS: Tissue-related parameters are estimated by varying four scan parameters of the 3D pRSGE: flip angle, RF-pulse phase increment, TR and TE, performing multiple image scans, and finding a least-squares fit for an intensity function (which expresses the relationship between the scan parameters and intensity values). The intensity function is analytically complex, but by using a Bloch simulation to create it numerically, the least-squares fitting can be used to estimate the quantitative values. This has the advantage of shortening the image-reconstruction processing time needed to estimate the quantitative values than with methods using pattern matching. RESULTS: A 1.1-mm isotropic resolution scan covering the whole brain was completed with a scan time of approximately 12 minutes, and the reconstruction time using a GPU was approximately 1 minute. The phantom experiments confirmed that both the accuracy and repeatability of the quantitative values were high. The volunteer scans also confirmed that the accuracy of the quantitative values was comparable to that of conventional methods. CONCLUSION: The proposed QPM method can map T1, T2*, PD, susceptibility, and B1 simultaneously within a scan time that can be applied to human subjects.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Processamento de Imagem Assistida por Computador/métodos , Mapeamento Encefálico/métodos , Simulação por Computador , Imagens de Fantasmas
8.
Magn Reson Med Sci ; 22(1): 87-94, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35264494

RESUMO

PURPOSE: Studies on quantitative susceptibility mapping (QSM) have reported an increase in magnetic susceptibilities in patients with Alzheimer's disease (AD). Despite the pathological importance of the brain surface areas, they are sometimes excluded in QSM analysis. This study aimed to reveal the efficacy of QSM analysis with brain surface correction (BSC) and/or vein removal (VR) procedures. METHODS: Thirty-seven AD patients and 37 age- and sex-matched, cognitively normal (CN) subjects were included. A 3D-gradient echo sequence at 3T MRI was used to obtain QSM. QSM images were created with regularization enabled sophisticated harmonic artifact reduction for phase data (RESHARP) and constrained RESHARP with BSC and/or VR. We conducted ROI analysis between AD patients and CN subjects who did or did not undergo BSC and/or VR using a t-test, to compare the susceptibility values after gray matter weighting. RESULTS: The susceptibility values in RESHARP without BSC were significantly larger in AD patients than in CN subjects in one region (precentral gyrus, 8.1 ± 2.9 vs. 6.5 ± 2.1 ppb) without VR and one region with VR (precentral gyrus, 7.5 ± 2.8 vs. 5.9 ± 2.0 ppb). Three regions in RESHARP with BSC had significantly larger susceptibilities without VR (precentral gyrus, 7.1 ± 2.0 vs. 5.9 ± 2.0 ppb; superior medial frontal gyrus, 5.7 ± 2.6 vs. 4.2 ± 3.1 ppb; putamen, 47,8 ± 16.5 vs. 40.0 ± 15.9 ppb). In contrast, six regions showed significantly larger susceptibilities with VR in AD patients than in CN subjects (precentral gyrus, 6.4 ± 1.9 vs. 4.9 ± 2.7 ppb; superior medial frontal gyrus, 5.3 ± 2.7 vs. 3.7 ± 3.3 ppb; orbitofrontal cortex, -2.1 ± 2.7 vs. -3.6 ± 3.2 ppb; parahippocampal gyrus, 0.1 ± 3.6 vs. -1.7 ± 3.7 ppb; putamen, 45.0 ± 14.9 vs. 37.6 ± 14.6 ppb; inferior temporal gyrus, -3.4 ± 1.5 vs. -4.4 ± 1.5 ppb). CONCLUSION: RESHARP with BSC and VR showed more regions of increased susceptibility in AD patients than in CN subjects. This study highlights the efficacy of this method in facilitating the diagnosis of AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Substância Cinzenta , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos
9.
Magn Reson Med Sci ; 22(2): 241-252, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650028

RESUMO

PURPOSE: The wavelet denoising with geometry factor weighting (g-denoising) method can reduce the image noise by adapting to spatially varying noise levels induced by parallel imaging. The aim of this study was to investigate the clinical applicability of g-denoising on hepatobiliary-phase (HBP) images with gadoxetic acid. METHODS: We subjected 53 patients suspected of harboring hepatic neoplastic lesions to gadoxetic acid-enhanced HBP imaging with and without g-denoising (g+HBP and g-HBP). The matrix size was reduced for g+HBP images to avoid prolonging the scanning time. Two radiologists calculated the SNR, the portal vein-, and paraspinal muscle contrast-to-noise ratio (CNR) relative to the hepatic parenchyma (liver-to-portal vein- and liver-to-muscle CNR). Two other radiologists independently graded the sharpness of the liver edge, the visibility of intrahepatic vessels, the image noise, the homogeneity of liver parenchyma, and the overall image quality using a 5-point scale. Differences between g-HBP and g+HBP images were determined with the two-sided Wilcoxon signed-rank test. RESULTS: The liver-to-portal- and liver-to-muscle CNR and the SNR were significantly higher on g+HBP- than g-HBP images (P < 0.01), as was the qualitative score for the image noise, homogeneity of liver parenchyma, and overall image quality (P < 0.01). Although there were no significant differences in the scores for the sharpness of the liver edge or the score assigned for the visibility of intrahepatic vessels (P = 0.05, 0.43), with g+HBP the score was lower in three patients for the sharpness of the liver edge and in six patients for the visibility of intrahepatic vessels. CONCLUSION: At gadoxetic acid-enhanced HBP imaging, g-denoising yielded a better image quality than conventional HBP imaging although the anatomic details may be degraded.


Assuntos
Meios de Contraste , Neoplasias Hepáticas , Humanos , Gadolínio DTPA , Fígado/diagnóstico por imagem , Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Estudos Retrospectivos
10.
Magn Reson Med Sci ; 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543227

RESUMO

PURPOSE: To increase the number of images that can be acquired in MR examinations using quantitative parameters, we developed a method for obtaining arterial and venous images with mapping of proton density (PD), RF inhomogeneity (B1), longitudinal relaxation time (T1), apparent transverse relaxation time (T2*), and magnetic susceptibility through calculation, all with the same spatial resolution. METHODS: The proposed method uses partially RF-spoiled gradient echo sequences to obtain 3D images of a subject with multiple scan parameters. The PD, B1, T1, T2*, and magnetic susceptibility maps are estimated using the quantification method we previously developed. Arterial images are obtained by adding images using optimized weights to emphasize the arteries. A morphology filter is used to obtain venous images from the magnetic susceptibility maps. For evaluation, images obtained from four out of five healthy volunteers were used to optimize the weights used in the arterial-image calculation, and the optimized weights were applied to the images from the fifth volunteer to obtain an arterial image. Arterial images of the five volunteers were calculated using the leave-one-out method, and the contrast between the arterial and background regions defined using the reference time-of-flight (TOF) method was evaluated using the area under the receiver operation characteristic curve (AUC). The contrast between venous and background regions defined by a reference quantitative susceptibility mapping (QSM) method was also evaluated for the venous image. RESULTS: The AUC to discriminate blood vessels and background using the proposed method was 0.905 for the arterial image and 0.920 for the venous image. CONCLUSION: The results indicate that the arterial images and venous images have high signal intensity at the same region as determined from the reference TOF and QSM methods, demonstrating the possibility of acquiring vasculature images with quantitative parameter mapping through calculation in an integrated manner.

11.
Radiographics ; 42(4): 1161-1176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35522577

RESUMO

Quantitative susceptibility mapping (QSM), one of the advanced MRI techniques for evaluating magnetic susceptibility, offers precise quantitative measurements of spatial distributions of magnetic susceptibility. Magnetic susceptibility describes the magnetizability of a material to an applied magnetic field and is a substance-specific value. Recently, QSM has been widely used to estimate various levels of substances in the brain, including iron, hemosiderin, and deoxyhemoglobin (paramagnetism), as well as calcification (diamagnetism). By visualizing iron distribution in the brain, it is possible to identify anatomic structures that are not evident on conventional images and to evaluate various neurodegenerative diseases. It has been challenging to apply QSM in areas outside the brain because of motion artifacts from respiration and heartbeats, as well as the presence of fat, which has a different frequency to the proton. In this review, the authors provide a brief overview of the theoretical background and analyze methods of converting MRI phase images to QSM. Moreover, we provide an overview of the current clinical applications of QSM. Online supplemental material is available for this article. ©RSNA, 2022.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Artefatos , Mapeamento Encefálico/métodos , Humanos , Ferro , Imageamento por Ressonância Magnética/métodos
12.
J Magn Reson Imaging ; 56(6): 1874-1882, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35488509

RESUMO

BACKGROUND: 17 O-labeled water (PSO17) is a contrast agent developed to measure brain water dynamics and cerebral blood flow. PURPOSE: To evaluate the safety and feasibility of PSO17. STUDY TYPE: Prospective study. SUBJECTS: A total of 12 male healthy volunteers (23.1 ± 1.9 years) were assigned to three groups of four subjects: placebo (normal saline), PSO17 10%, and PSO17 20%. FIELD STRENGTH/SEQUENCE: Dynamic 3D fluid attenuated inversion recovery (FLAIR, fast spin echo with variable refocusing flip angle) scans of the brain were performed with 3-T MRI. ASSESSMENT: Contrast agents were injected 5 minutes after the start of a 10-minute scan. Any symptoms, vital signs, and blood and urine tests were evaluated at five timepoints from preinjection to 4 days after. Blood samples for pharmacokinetic analysis, including half-life (T1/2), maximum fraction (Cmax ), time-to-maximum fraction (Tmax ), and area under the curve (AUC), were collected at 13 timepoints from preinjection to 168 hours after. Regions of interest were set in the cerebral cortex (CC), basal ganglia/thalamus (BG/TM), and white matter (WM), and 17 O concentrations were calculated from signal changes and evaluated using Cmax . STATISTICAL TESTS: All items were compared among the three groups using Tukey-Kramer's honestly significant difference test. Statistical significance was defined as P < 0.5. RESULTS: No safety issues were noted with the intravenous administration of PSO17. The T1/2 was approximately 160 hours, and the AUCs were 1.77 ± 0.10 and 3.75 ± 0.36 in the PSO17 10% and 20% groups, respectively. 17 O fractions calculated from MRI signals were higher in the PSO17 20% group than in the 10% and placebo groups. Significant differences were noted between all pairs of groups in the CC and BG/TM, and between PSO17 20% and both placebo and 10% groups in the WM. DATA CONCLUSION: PSO17 might be considered safe as a contrast medium. Dynamic 3D-FLAIR might detect dose-dependent signal changes and estimate 17 O. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.


Assuntos
Prótons , Água , Humanos , Masculino , Estudos de Viabilidade , Estudos Prospectivos , Imageamento por Ressonância Magnética/efeitos adversos , Meios de Contraste
13.
Eur Radiol ; 32(7): 4479-4488, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35137303

RESUMO

OBJECTIVES: Voxel-based morphometry (VBM) is widely used to quantify the progression of Alzheimer's disease (AD), but improvement is still needed for accurate early diagnosis. We evaluated the feasibility of a novel diagnosis index for early diagnosis of AD based on quantitative susceptibility mapping (QSM) and VBM. METHODS: Thirty-seven patients with AD, 24 patients with mild cognitive impairment (MCI) due to AD, and 36 cognitively normal (NC) subjects from four centers were included. A hybrid sequence was performed by using 3-T MRI with a 3D multi-echo GRE sequence to obtain both a T1-weighted image for VBM and phase images for QSM. The index was calculated from specific voxels in QSM and VBM images by using a linear support vector machine. The method of voxel extraction was optimized to maximize diagnostic accuracy, and the optimized index was compared with the conventional VBM-based index using receiver operating characteristic analysis. RESULTS: The index was optimal when voxels were extracted as increased susceptibility (AD > NC) in the parietal lobe and decreased gray matter volume (AD < NC) in the limbic system. The optimized proposed index showed excellent performance for discrimination between AD and NC (AUC = 0.94, p = 1.1 × 10-10) and good performance for MCI and NC (AUC = 0.87, p = 1.8 × 10-6), but poor performance for AD and MCI (AUC = 0.68, p = 0.018). Compared with the conventional index, AUCs were improved for all cases, especially for MCI and NC (p < 0.05). CONCLUSIONS: In this preliminary study, the proposed index based on QSM and VBM improved the diagnostic performance between MCI and NC groups compared with the VBM-based index. KEY POINTS: • We developed a novel diagnostic index for Alzheimer's disease based on quantitative susceptibility mapping (QSM) and voxel-based morphometry (VBM). • QSM and VBM images can be acquired simultaneously in a single sequence with little increasing scan time. • In this preliminary study, the proposed diagnostic index improved the discriminative performance between mild cognitive impairment and normal control groups compared with the conventional VBM-based index.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Diagnóstico Precoce , Substância Cinzenta , Humanos , Imageamento por Ressonância Magnética/métodos
14.
Magn Reson Med Sci ; 21(4): 609-622, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34483224

RESUMO

PURPOSE: The staging of liver fibrosis is clinically important, and a less invasive method is preferred. Quantitative susceptibility mapping (QSM) has shown a great potential in estimating liver fibrosis in addition to R2* relaxometry. However, few studies have compared QSM analysis and liver fibrosis. We aimed to evaluate the feasibility of estimating liver fibrosis by using QSM and R2*-based histogram analyses by comparing it with ultrasound-based transient elastography and the stage of histologic fibrosis. METHODS: Fourteen patients with liver disease were enrolled. Data sets of multi-echo gradient echo sequence with breath-holding were acquired on a 3-Tesla scanner. QSM and R2* were reconstructed by water-fat separation method, and ROIs were analyzed for these images. Quantitative parameters with histogram features (mean, variance, skewness, kurtosis, and 1st, 10th, 50th, 90th, and 99th percentiles) were extracted. These data were compared with the elasticity measured by ultrasound transient elastography and histological stage of liver fibrosis (F0 to F4, based on the new Inuyama classification) determined by biopsy or hepatectomy. The correlation of histogram parameters with intrahepatic elasticity and histologically confirmed fibrosis stage was examined. Texture parameters were compared between subgroups divided according to fibrosis stage. Receiver operating characteristic (ROC) analysis was also performed. P < 0.05 indicated statistical significance. RESULTS: The six histogram parameters of both QSM and R2*were significantly correlated with intrahepatic elasticity. In particular, three parameters (variance, percentiles [90th and 99th]) of QSM showed high correlation (r = 0.818-0.844), whereas R2* parameters showed a moderate correlation with elasticity. Four parameters of QSM were significantly correlated with fibrosis stage (ρ = 0.637-0.723) and differentiated F2-4 from F0-1 fibrosis and F3-4 from F0-2 fibrosis with areas under the ROC curve of > 0.8, but those of R2* did not. CONCLUSION: QSM may serve as a promising surrogate indicator in detecting liver fibrosis.


Assuntos
Técnicas de Imagem por Elasticidade , Hepatopatias , Técnicas de Imagem por Elasticidade/métodos , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Hepatopatias/patologia , Curva ROC , Água
15.
Magn Reson Imaging ; 66: 22-29, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31715250

RESUMO

We propose a novel processing method for reducing shading artifacts in quantitative susceptibility mapping (QSM) for prostate imaging. In the conventional method, calculation errors in the boundary regions between water and fat cause shading artifacts that degrade the image quality for QSM. In the proposed method, water and fat regions are separated, and susceptibilities in these two regions are calculated separately and then combined. Susceptibility in the water regions is calculated by using the fat regions as a background susceptibility source to remove shading artifacts. Susceptibility in the fat regions is calculated by using the constraint that shading artifacts in the water regions are suppressed to improve accuracy. In quantitative evaluation of the method with a numerical simulation, calculation errors for the water and fat regions were reduced by 62% and 85%, respectively, compared with the conventional method. In visual evaluation using human prostate imaging, the proposed method also reduced the shading artifacts unlike the conventional method. The proposed method is expected to improve the performance of QSM in diagnosing such diseases as prostate cancer.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Próstata/anatomia & histologia , Tecido Adiposo/diagnóstico por imagem , Adulto , Algoritmos , Humanos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Água
16.
Radiol Phys Technol ; 11(2): 255-261, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29700796

RESUMO

To realize susceptibility-weighted imaging in vertical-field magnetic resonance imaging (MRI), we developed an image-processing method called "susceptibility difference weighted imaging" (SDWI). In SDWI, contrasts are enhanced using a susceptibility map calculated by using a weighted least-square algorithm with a small iteration number. Experiments were performed on human volunteers to compare image contrast obtained from the conventional method (SWI) and SDWI. In horizontal-field MRI, SDWI results show that veins and deep-gray-matter nuclei were visualized as well as those with SWI. In vertical-field MRI, SDWI visualized veins and deep-gray-matter nuclei without severe streaking artifacts, while SWI did not. In our experiments, the time taken to calculate the susceptibility map in SDWI was less than 10 s. The results indicate that susceptibility-weighted imaging is feasible in vertical-field MRI using SDWI.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Adulto , Algoritmos , Humanos , Masculino , Veias/diagnóstico por imagem
17.
JA Clin Rep ; 4(1): 6, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29457116

RESUMO

BACKGROUND: Spinal cord infarction (SCI) after epidural anesthesia is quite rare. Although most cases of perioperative SCI are associated with aortic, cardiac, or spinal surgery, and/or abnormal preoperative conditions, such as spinal stenosis or hypercoagulopathy, intraoperative events, such as severe hypotension or epidural puncture and catheterization, can be contributory factors. CASE PRESENTATION: A 52-year-old male was underwent laparoscopic gastrectomy. Before induction of general anesthesia, an epidural catheter was placed without any problems. The patient had no pain and no complaint just after the operation, but suddenly complained of back pain and anuria, and could not move either of his lower limbs 30 h after the operation. As we thought that the incident would be caused by the migration of the epidural catheter into the subarachnoid space, we removed the catheter, but there was no recovery of the symptoms even 20 h later. The magnetic resonance imaging (MRI) scan showed no hematoma in the epidural space but an abnormal signal within the spinal cord, extending from the Th3 to Th8 levels, which was consistent with the SCI. Unfortunately, the patient's recovery from the paraplegia and abnormal sensation was poor. CONCLUSIONS: When a patient complains of lower limb muscle weakness and/or abnormal sensations, it is important to perform an MRI examination and treatment as early as possible to avoid permanent paraplegia, especially after epidural puncture and catheterization.

18.
JA Clin Rep ; 4(1): 44, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32026022

RESUMO

BACKGROUND: Parkinson's disease (PD) patients often suffer from cardiac sympathetic denervation, a hallmark of which is orthostatic hypotension. Denervation supersensitivity to sympathomimetic drugs is also seen in such patients, and this phenomenon is important and can be sometimes dangerous. CASE PRESENTATION: A 65-year-old male underwent gastrojejunostomy. The patient had severe PD and did not exhibit metaiodobenzylguanidine (MIBG) accumulation in his heart, which was indicative of cardiac sympathetic nerve denervation. When 8 mg of ephedrine was administered intravenously, an unexpectedly large increase in blood pressure was observed. The phenomenon recurred when 4 mg of ephedrine was administered again, and nicardipine was required to suppress the patient's blood pressure. CONCLUSIONS: Denervation supersensitivity is not as well recognized as other complications seen in PD patients, but anesthesiologists should be aware of it because sympathomimetic drugs can have excessively strong effects in patients with the condition.

19.
J Magn Reson Imaging ; 47(1): 123-130, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28556386

RESUMO

PURPOSE: To evaluate the homogeneity of the radiofrequency magnetic field (B1+ ) and signal intensity using different arm positions during 3T thoracolumbar spinal imaging. MATERIALS AND METHODS: Twenty volunteers were scanned with a four-channel radiofrequency (RF) transmit coil at 3T, with arms on the bed (conventional), arms elevated by 100 mm (arm lift), or with the arms-up position (elevated arm). Axial B1+ maps and sagittal T1 -weighted image (T1 WI)-performed RF shimming were obtained for each arm position. The mean and standard deviation (SD) of the flip angle (FA) at the center of the vertebra on each B1+ map, and contrast noise ratios (CNRs) between the spinal cord and cerebrospinal fluid of sagittal T1 WI, were calculated and compared among the different arm positions. RESULTS: Mean FA values (degrees) for the arm lift and elevated arm positions were significantly larger than for the conventional position (P < 0.001 for both) at the twelfth thoracic vertebra (Th12). FA SD values for the arm lift and elevated arm position were significantly smaller than for the conventional position (P < 0.001 for both) at Th12. CNR for the arm lift and elevated arm position were significantly higher than for the conventional position (P = 0.007 and 0.002, respectively). The mean and SD of the FA and the CNR did not differ significantly for the arm lift and elevated arm positions (P = 0.591, 0.958, and 0.927, respectively). CONCLUSION: Inhomogeneities of B1+ and signal intensities were improved by simply changing the arm position in 3T thoracolumbar spinal imaging. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:123-130.


Assuntos
Imageamento por Ressonância Magnética , Medula Espinal/diagnóstico por imagem , Coluna Vertebral/diagnóstico por imagem , Vértebras Torácicas/diagnóstico por imagem , Adulto , Voluntários Saudáveis , Humanos , Interpretação de Imagem Assistida por Computador , Campos Magnéticos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ondas de Rádio , Reprodutibilidade dos Testes
20.
Magn Reson Med Sci ; 16(4): 340-350, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28367904

RESUMO

Quantitative susceptibility mapping (QSM) is a new magnetic resonance imaging (MRI) technique for noninvasively estimating the magnetic susceptibility of biological tissue. Several methods for QSM have been proposed. One of these methods can estimate susceptibility with high accuracy in tissues whose contrast is consistent between magnitude images and susceptibility maps, such as deep gray-matter nuclei. However, the susceptibility of small veins is underestimated and not well depicted by using the above approach, because the contrast of small veins is inconsistent between a magnitude image and a susceptibility map. In order to improve the estimation accuracy and visibility of small veins without streaking artifacts, a method with multiple dipole-inversion combination with k-space segmentation (MUDICK) has been proposed. In the proposed method, k-space was divided into three domains (low-frequency, magic-angle, and high-frequency). The k-space data in low-frequency and magic-angle domains were obtained by L1-norm regularization using structural information of a pre-estimated susceptibility map. The k-space data in high-frequency domain were obtained from the pre-estimated susceptibility map in order to preserve small-vein contrasts. Using numerical simulation and human brain study at 3 Tesla, streaking artifacts and small-vein susceptibility were compared between MUDICK and conventional methods (MEDI and TKD). The numerical simulation and human brain study showed that MUDICK and MEDI had no severe streaking artifacts and MUDICK showed higher contrast and accuracy of susceptibility in small-veins compared to MEDI. These results suggest that MUDICK can improve the accuracy and visibility of susceptibility in small-veins without severe streaking artifacts.


Assuntos
Mapeamento Encefálico/métodos , Substância Cinzenta/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...