Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Res ; 200: 1-7, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37866527

RESUMO

The human cerebrum contains a large amount of cortico-cortical association fibers. Among them, U-fibers are short-range association fibers located in white matter immediately deep to gray matter. Although U-fibers are thought to be crucial for higher cognitive functions, the organization within U-fiber regions are still unclear. Here we investigated the properties of U-fiber regions in the ferret cerebrum using neurochemical, neuronal tracing, immunohistochemical and electron microscopic techniques. We found that U-fiber regions can be subdivided into two regions, which we named outer and inner U-fiber regions. We further uncovered that outer U-fiber regions have smaller-diameter axons with thinner myelin compared with inner U-fiber regions. These findings may indicate functional complexity within U-fiber regions in the cerebrum.


Assuntos
Cérebro , Substância Branca , Animais , Humanos , Furões/fisiologia , Encéfalo , Bainha de Mielina , Axônios
2.
Cell Mol Gastroenterol Hepatol ; 14(4): 925-944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35787976

RESUMO

BACKGROUND & AIMS: The lipid oxidation is a key factor for damaging hepatocytes and causing cell death. However, the mechanisms underlying hepatocyte death and the role of the most popular lipid peroxidation product 4-hydroxy-2-nonenal (HNE) in nonalcoholic steatohepatitis (NASH) remains unclear. METHODS: We demonstrated using hepatoma cell lines, a NASH mouse model, HNE-treated monkeys, and biopsy specimens from patients with NASH that HNE induced hepatocyte death by disintegrating the lysosomal limiting membrane. RESULTS: The degree of HNE deposition in human NASH hepatocytes was more severe in cases with high lobular inflammation, ballooning, and fibrosis scores, and was associated with enlargement of the staining of lysosomes in hepatocytes. In in vitro experiments, HNE activated µ-calpain via G-protein coupled receptor (GPR) 120. The resultant rupture/permeabilization of the lysosomal limiting membrane induced the leakage of cathepsins from lysosomes and hepatocyte death. The blockade of G-protein coupled receptor 120 (GPR120) or µ-calpain expression suppressed lysosomal membrane damage and hepatocyte death by HNE. Alda-1, which activates aldehyde dehydrogenase 2 to degrade HNE, prevented HNE-induced hepatocyte death. Intravenous administration of HNE to monkeys for 6 months resulted in hepatocyte death by a mechanism similar to that of cultured cells. In addition, intraperitoneal administration of Alda-1 to choline-deficient, amino-acid defined treated mice for 8 weeks inhibited HNE deposition, decreased liver inflammation, and disrupted lysosomal membranes in hepatocytes, resulting in improvement of liver fibrosis. CONCLUSIONS: These results provide novel insights into the mechanism of hepatocyte death in NASH and will contribute to the development of new therapeutic strategies for NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Aldeído Desidrogenase/metabolismo , Animais , Catepsinas/metabolismo , Colina/metabolismo , Hepatócitos/metabolismo , Humanos , Inflamação/patologia , Lipídeos , Lisossomos/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia
3.
Front Microbiol ; 13: 720308, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185840

RESUMO

Clostridium botulinum produces botulinum neurotoxin complexes that cause botulism. Previous studies elucidated the molecular pathogenesis of botulinum neurotoxin complexes; however, it currently remains unclear whether other components of the bacterium affect host cells. Recent studies provided insights into the role of bacterial membrane vesicles (MVs) produced by some bacterial species in host immunity and pathology. We herein examined and compared the cellular effects of MVs isolated from four strains of C. botulinum with those of closely related Clostridium sporogenes and two strains of the symbiont Clostridium scindens. MVs derived from all strains induced inflammatory cytokine expression in intestinal epithelial and macrophage cell lines. Cytokine expression was dependent on myeloid differentiation primary response (MyD) 88 and TIR-domain-containing adapter-inducing interferon-ß (TRIF), essential adaptors for toll-like receptors (TLRs), and TLR1/2/4. The inhibition of actin polymerization impeded the uptake of MVs in RAW264.7 cells, however, did not reduce the induction of cytokine expression. On the other hand, the inhibition of dynamin or phosphatidylinositol-3 kinase (PI3K) suppressed the induction of cytokine expression by MVs, suggesting the importance of these factors downstream of TLR signaling. MVs also induced expression of Reg3 family antimicrobial peptides via MyD88/TRIF signaling in primary cultured mouse small intestinal epithelial cells (IECs). The present results indicate that MVs from C. botulinum and related clostridial species induce host innate immune responses.

4.
Front Cell Neurosci ; 13: 258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244614

RESUMO

CD38 is an enzyme that catalyzes the synthesis of cyclic adenosine diphosphate-ribose from nicotinamide adenine dinucleotide (NAD+). We recently reported that this molecule regulates the maturation and differentiation of glial cells such as astrocytes and oligodendrocytes (OLs) in the developing brain. To analyze its role in the demyelinating situation, we employed cuprizone (CPZ)-induced demyelination model in mice, which is characterized by oligodendrocyte-specific apoptosis, followed by the strong glial activation, demyelination, and repopulation of OLs. By using this model, we found that CD38 was upregulated in both astrocytes and microglia after CPZ administration. Experiments using wild-type and CD38 knockout (KO) mice, together with those using cultured glial cells, revealed that CD38 deficiency did not affect the initial decrease of the number of OLs, while it attenuated CPZ-induced demyelination, and neurodegeneration. Importantly, the clearance of the degraded myelin and oligodendrocyte repopulation were also reduced in CD38 KO mice. Further experiments revealed that these observations were associated with reduced levels of glial activation and inflammatory responses including phagocytosis, most likely through the enhanced level of NAD+ in CD38-deleted condition. Our results suggest that CD38 and NAD+ in the glial cells play a critical role in the demyelination and subsequent oligodendrocyte remodeling through the modulation of glial activity and neuroinflammation.

5.
Commun Biol ; 2: 76, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820471

RESUMO

Oxytocin sets the stage for childbirth by initiating uterine contractions, lactation and maternal bonding behaviours. Mice lacking secreted oxcytocin (Oxt -/-, Cd38 -/-) or its receptor (Oxtr -/-) fail to nurture. Normal maternal behaviour is restored by peripheral oxcytocin replacement in Oxt -/- and Cd38 -/-, but not Oxtr -/- mice, implying that circulating oxcytocin crosses the blood-brain barrier. Exogenous oxcytocin also has behavioural effects in humans. However, circulating polypeptides are typically excluded from the brain. We show that oxcytocin is transported into the brain by receptor for advanced glycation end-products (RAGE) on brain capillary endothelial cells. The increases in oxcytocin in the brain which follow exogenous administration are lost in Ager -/- male mice lacking RAGE, and behaviours characteristic to abnormalities in oxcytocin signalling are recapitulated in Ager -/- mice, including deficits in maternal bonding and hyperactivity. Our findings show that RAGE-mediated transport is critical to the behavioural actions of oxcytocin associated with parenting and social bonding.


Assuntos
Encéfalo/metabolismo , Comportamento Materno/fisiologia , Apego ao Objeto , Ocitocina/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Comportamento Materno/psicologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptor para Produtos Finais de Glicação Avançada/sangue , Receptor para Produtos Finais de Glicação Avançada/genética , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo
6.
Mol Pain ; 14: 1744806917751322, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29359616

RESUMO

Background Diabetic gastropathy is a complex neuromuscular dysfunction of the stomach that commonly occurs in diabetes mellitus. Diabetic patients often present with upper gastrointestinal symptoms, such as epigastric discomfort or pain. The aim of this study was to assess gastric sensation in streptozocin-induced diabetes mellitus (DM) rats and to determine the contribution of C-C motif chemokine receptor 2 (CCR2) signaling to gastric hyperalgesia. Results DM rats showed signs of neuropathy (cutaneous mechanical hyperalgesia) from two weeks after streptozocin administration until the end of the experiment. Accelerated solid gastric emptying was observed at two weeks after streptozocin administration compared to the controls. Intense gastric hyperalgesia also developed in DM rats at two weeks after streptozocin administration, which was significantly reduced after intrathecal administration of the CCR2 antagonist INCB3344. Immunochemical analysis indicated that CCR2 expression was substantially upregulated in small and medium-sized dorsal root ganglia neurons of DM rats, although the protein level of monocyte chemoattractant protein-1, the preferred ligand for CCR2, was not significantly different between the control and DM groups. Conclusions These data suggest that CCR2 activation in nociceptive dorsal root ganglia neurons plays a role in the pathogenesis of gastric hyperalgesia associated with diabetic gastropathy and that CCR2 antagonist may be a promising treatment for therapeutic intervention.


Assuntos
Diabetes Mellitus Experimental/complicações , Gânglios Espinais/metabolismo , Hiperalgesia/complicações , Receptores CCR2/metabolismo , Gastropatias/metabolismo , Estômago/patologia , Regulação para Cima , Animais , Glicemia/metabolismo , Quimiocina CCL2/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Neuropatias Diabéticas/sangue , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/patologia , Gânglios Espinais/patologia , Hiperalgesia/sangue , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Masculino , Atividade Motora , Ratos Sprague-Dawley , Receptores CCR2/antagonistas & inibidores , Medula Espinal/metabolismo , Medula Espinal/patologia , Estômago/fisiopatologia , Gastropatias/complicações , Gastropatias/patologia , Gastropatias/fisiopatologia , Estreptozocina
7.
Glia ; 65(6): 974-989, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28295574

RESUMO

Glial development is critical for the function of the central nervous system. CD38 is a multifunctional molecule with ADP-ribosyl cyclase activity. While critical roles of CD38 in the adult brain such as oxytocin release and social behavior have been reported, those in the developing brain remain largely unknown. Here we demonstrate that deletion of Cd38 leads to impaired development of astrocytes and oligodendrocytes in mice. CD38 is highly expressed in the developing brains between postnatal day 14 (P14) and day 28 (P28). In situ hybridization and FACS analysis revealed that CD38 is expressed predominantly in astrocytes in these periods. Analyses of the cortex of Cd38 knockout (Cd38-/- ) mice revealed delayed development of astrocytes and subsequently delayed differentiation of oligodendrocytes (OLs) at postnatal stages. In vitro experiments using primary OL cultures, mixed glial cultures, and astrocytic conditioned medium showed that astrocytic CD38 regulates the development of astrocytes in a cell-autonomous manner and the differentiation of OLs in a non-cell-autonomous manner. Further experiments revealed that connexin43 (Cx43) in astrocytes plays a promotive role for CD38-mediated OL differentiation. Finally, increased levels of NAD+ , caused by CD38 deficiency, are likely to be responsible for the suppression of astrocytic Cx43 expression and OL differentiation. Our data indicate that CD38 is a positive regulator of astrocyte and OL development.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase/metabolismo , Astrócitos/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Oligodendroglia/metabolismo , ADP-Ribosil Ciclase/genética , ADP-Ribosil Ciclase 1/genética , Animais , Astrócitos/citologia , Encéfalo/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Conexina 43/metabolismo , Feminino , Masculino , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos ICR , Camundongos Knockout , NAD/metabolismo , Oligodendroglia/citologia , Ratos Wistar
8.
Nature ; 446(7131): 41-5, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17287729

RESUMO

CD38, a transmembrane glycoprotein with ADP-ribosyl cyclase activity, catalyses the formation of Ca2+ signalling molecules, but its role in the neuroendocrine system is unknown. Here we show that adult CD38 knockout (CD38-/-) female and male mice show marked defects in maternal nurturing and social behaviour, respectively, with higher locomotor activity. Consistently, the plasma level of oxytocin (OT), but not vasopressin, was strongly decreased in CD38-/- mice. Replacement of OT by subcutaneous injection or lentiviral-vector-mediated delivery of human CD38 in the hypothalamus rescued social memory and maternal care in CD38-/- mice. Depolarization-induced OT secretion and Ca2+ elevation in oxytocinergic neurohypophysial axon terminals were disrupted in CD38-/- mice; this was mimicked by CD38 metabolite antagonists in CD38+/+ mice. These results reveal that CD38 has a key role in neuropeptide release, thereby critically regulating maternal and social behaviours, and may be an element in neurodevelopmental disorders.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Comportamento Materno/fisiologia , Ocitocina/metabolismo , Comportamento Social , ADP-Ribosil Ciclase 1/deficiência , ADP-Ribosil Ciclase 1/genética , Amnésia/genética , Amnésia/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Feminino , Regulação da Expressão Gênica , Humanos , Injeções , Masculino , Memória/fisiologia , Camundongos , Atividade Motora/fisiologia , Ocitocina/administração & dosagem , Ocitocina/sangue , Ocitocina/farmacologia , Vasopressinas/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...