Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MMWR Morb Mortal Wkly Rep ; 73(4): 77-83, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300853

RESUMO

On September 12, 2023, CDC's Advisory Committee on Immunization Practices recommended updated 2023-2024 (updated) COVID-19 vaccination with a monovalent XBB.1.5-derived vaccine for all persons aged ≥6 months to prevent COVID-19, including severe disease. During fall 2023, XBB lineages co-circulated with JN.1, an Omicron BA.2.86 lineage that emerged in September 2023. These variants have amino acid substitutions that might increase escape from neutralizing antibodies. XBB lineages predominated through December 2023, when JN.1 became predominant in the United States. Reduction or failure of spike gene (S-gene) amplification (i.e., S-gene target failure [SGTF]) in real-time reverse transcription-polymerase chain reaction testing is a time-dependent, proxy indicator of JN.1 infection. Data from the Increasing Community Access to Testing SARS-CoV-2 pharmacy testing program were analyzed to estimate updated COVID-19 vaccine effectiveness (VE) (i.e., receipt versus no receipt of updated vaccination) against symptomatic SARS-CoV-2 infection, including by SGTF result. Among 9,222 total eligible tests, overall VE among adults aged ≥18 years was 54% (95% CI = 46%-60%) at a median of 52 days after vaccination. Among 2,199 tests performed at a laboratory with SGTF testing, VE 60-119 days after vaccination was 49% (95% CI = 19%-68%) among tests exhibiting SGTF and 60% (95% CI = 35%-75%) among tests without SGTF. Updated COVID-19 vaccines provide protection against symptomatic infection, including against currently circulating lineages. CDC will continue monitoring VE, including for expected waning and against severe disease. All persons aged ≥6 months should receive an updated COVID-19 vaccine dose.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Estados Unidos/epidemiologia , Adulto , Humanos , Adolescente , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Eficácia de Vacinas , SARS-CoV-2
2.
MMWR Morb Mortal Wkly Rep ; 72(24): 651-656, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37319011

RESUMO

CDC has used national genomic surveillance since December 2020 to monitor SARS-CoV-2 variants that have emerged throughout the COVID-19 pandemic, including the Omicron variant. This report summarizes U.S. trends in variant proportions from national genomic surveillance during January 2022-May 2023. During this period, the Omicron variant remained predominant, with various descendant lineages reaching national predominance (>50% prevalence). During the first half of 2022, BA.1.1 reached predominance by the week ending January 8, 2022, followed by BA.2 (March 26), BA.2.12.1 (May 14), and BA.5 (July 2); the predominance of each variant coincided with surges in COVID-19 cases. The latter half of 2022 was characterized by the circulation of sublineages of BA.2, BA.4, and BA.5 (e.g., BQ.1 and BQ.1.1), some of which independently acquired similar spike protein substitutions associated with immune evasion. By the end of January 2023, XBB.1.5 became predominant. As of May 13, 2023, the most common circulating lineages were XBB.1.5 (61.5%), XBB.1.9.1 (10.0%), and XBB.1.16 (9.4%); XBB.1.16 and XBB.1.16.1 (2.4%), containing the K478R substitution, and XBB.2.3 (3.2%), containing the P521S substitution, had the fastest doubling times at that point. Analytic methods for estimating variant proportions have been updated as the availability of sequencing specimens has declined. The continued evolution of Omicron lineages highlights the importance of genomic surveillance to monitor emerging variants and help guide vaccine development and use of therapeutics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , COVID-19/epidemiologia , Genômica
3.
MMWR Morb Mortal Wkly Rep ; 72(5): 125-127, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36730050

RESUMO

Monitoring emerging SARS-CoV-2 lineages and their epidemiologic characteristics helps to inform public health decisions regarding vaccine policy, the use of therapeutics, and health care capacity. When the SARS-CoV-2 Alpha variant emerged in late 2020, a spike gene (S-gene) deletion (Δ69-70) in the N-terminal region, which might compensate for immune escape mutations that impair infectivity (1), resulted in reduced or failed S-gene target amplification in certain multitarget reverse transcription-polymerase chain reaction (RT-PCR) assays, a pattern referred to as S-gene target failure (SGTF) (2). The predominant U.S. SARS-CoV-2 lineages have generally alternated between SGTF and S-gene target presence (SGTP), which alongside genomic sequencing, has facilitated early monitoring of emerging variants. During a period when Omicron BA.5-related sublineages (which exhibit SGTF) predominated, an XBB.1.5 sublineage with SGTP has rapidly expanded in the northeastern United States and other regions.


Assuntos
COVID-19 , Saúde Pública , Estados Unidos/epidemiologia , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Mutação , Teste para COVID-19
4.
MMWR Morb Mortal Wkly Rep ; 71(6): 206-211, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35143464

RESUMO

Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.† The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/genética , Centers for Disease Control and Prevention, U.S. , Genômica , Humanos , Prevalência , Vigilância em Saúde Pública/métodos , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...