Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Imaging ; 9(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37754955

RESUMO

Deep learning models perform unreliably when the data come from a distribution different from the training one. In critical applications such as medical imaging, out-of-distribution (OOD) detection methods help to identify such data samples, preventing erroneous predictions. In this paper, we further investigate OOD detection effectiveness when applied to 3D medical image segmentation. We designed several OOD challenges representing clinically occurring cases and found that none of the methods achieved acceptable performance. Methods not dedicated to segmentation severely failed to perform in the designed setups; the best mean false-positive rate at a 95% true-positive rate (FPR) was 0.59. Segmentation-dedicated methods still achieved suboptimal performance, with the best mean FPR being 0.31 (lower is better). To indicate this suboptimality, we developed a simple method called Intensity Histogram Features (IHF), which performed comparably or better in the same challenges, with a mean FPR of 0.25. Our findings highlight the limitations of the existing OOD detection methods with 3D medical images and present a promising avenue for improving them. To facilitate research in this area, we release the designed challenges as a publicly available benchmark and formulate practical criteria to test the generalization of OOD detection beyond the suggested benchmark. We also propose IHF as a solid baseline to contest emerging methods.

2.
Med Image Anal ; 83: 102628, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283200

RESUMO

Domain Adaptation (DA) has recently been of strong interest in the medical imaging community. While a large variety of DA techniques have been proposed for image segmentation, most of these techniques have been validated either on private datasets or on small publicly available datasets. Moreover, these datasets mostly addressed single-class problems. To tackle these limitations, the Cross-Modality Domain Adaptation (crossMoDA) challenge was organised in conjunction with the 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). CrossMoDA is the first large and multi-class benchmark for unsupervised cross-modality Domain Adaptation. The goal of the challenge is to segment two key brain structures involved in the follow-up and treatment planning of vestibular schwannoma (VS): the VS and the cochleas. Currently, the diagnosis and surveillance in patients with VS are commonly performed using contrast-enhanced T1 (ceT1) MR imaging. However, there is growing interest in using non-contrast imaging sequences such as high-resolution T2 (hrT2) imaging. For this reason, we established an unsupervised cross-modality segmentation benchmark. The training dataset provides annotated ceT1 scans (N=105) and unpaired non-annotated hrT2 scans (N=105). The aim was to automatically perform unilateral VS and bilateral cochlea segmentation on hrT2 scans as provided in the testing set (N=137). This problem is particularly challenging given the large intensity distribution gap across the modalities and the small volume of the structures. A total of 55 teams from 16 countries submitted predictions to the validation leaderboard. Among them, 16 teams from 9 different countries submitted their algorithm for the evaluation phase. The level of performance reached by the top-performing teams is strikingly high (best median Dice score - VS: 88.4%; Cochleas: 85.7%) and close to full supervision (median Dice score - VS: 92.5%; Cochleas: 87.7%). All top-performing methods made use of an image-to-image translation approach to transform the source-domain images into pseudo-target-domain images. A segmentation network was then trained using these generated images and the manual annotations provided for the source image.


Assuntos
Neuroma Acústico , Humanos , Neuroma Acústico/diagnóstico por imagem
3.
J Imaging ; 8(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36135401

RESUMO

Deep learning methods provide significant assistance in analyzing coronavirus disease (COVID-19) in chest computed tomography (CT) images, including identification, severity assessment, and segmentation. Although the earlier developed methods address the lack of data and specific annotations, the current goal is to build a robust algorithm for clinical use, having a larger pool of available data. With the larger datasets, the domain shift problem arises, affecting the performance of methods on the unseen data. One of the critical sources of domain shift in CT images is the difference in reconstruction kernels used to generate images from the raw data (sinograms). In this paper, we show a decrease in the COVID-19 segmentation quality of the model trained on the smooth and tested on the sharp reconstruction kernels. Furthermore, we compare several domain adaptation approaches to tackle the problem, such as task-specific augmentation and unsupervised adversarial learning. Finally, we propose the unsupervised adaptation method, called F-Consistency, that outperforms the previous approaches. Our method exploits a set of unlabeled CT image pairs which differ only in reconstruction kernels within every pair. It enforces the similarity of the network's hidden representations (feature maps) by minimizing the mean squared error (MSE) between paired feature maps. We show our method achieving a 0.64 Dice Score on the test dataset with unseen sharp kernels, compared to the 0.56 Dice Score of the baseline model. Moreover, F-Consistency scores 0.80 Dice Score between predictions on the paired images, which almost doubles the baseline score of 0.46 and surpasses the other methods. We also show F-Consistency to better generalize on the unseen kernels and without the presence of the COVID-19 lesions than the other methods trained on unlabeled data.

4.
IEEE J Biomed Health Inform ; 26(7): 3037-3046, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35213318

RESUMO

We systematically evaluate a Deep Learning model in a 3D medical image segmentation task. With our model, we address the flaws of manual segmentation: high inter-rater contouring variability and time consumption of the contouring process. The main extension over the existing evaluations is the careful and detailed analysis that could be further generalized on other medical image segmentation tasks. Firstly, we analyze the changes in the inter-rater detection agreement. We show that the model reduces the number of detection disagreements by [Formula: see text] [Formula: see text]. Secondly, we show that the model improves the inter-rater contouring agreement from [Formula: see text] to [Formula: see text] surface Dice Score [Formula: see text]. Thirdly, we show that the model accelerates the delineation process between [Formula: see text] and [Formula: see text] times [Formula: see text]. Finally, we design the setup of the clinical experiment to either exclude or estimate the evaluation biases; thus, preserving the significance of the results. Besides the clinical evaluation, we also share intuitions and practical ideas for building an efficient DL-based model for 3D medical image segmentation.


Assuntos
Aprendizado Profundo , Radiocirurgia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional
5.
J Imaging ; 7(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-34460634

RESUMO

The prevailing approach for three-dimensional (3D) medical image segmentation is to use convolutional networks. Recently, deep learning methods have achieved human-level performance in several important applied problems, such as volumetry for lung-cancer diagnosis or delineation for radiation therapy planning. However, state-of-the-art architectures, such as U-Net and DeepMedic, are computationally heavy and require workstations accelerated with graphics processing units for fast inference. However, scarce research has been conducted concerning enabling fast central processing unit computations for such networks. Our paper fills this gap. We propose a new segmentation method with a human-like technique to segment a 3D study. First, we analyze the image at a small scale to identify areas of interest and then process only relevant feature-map patches. Our method not only reduces the inference time from 10 min to 15 s but also preserves state-of-the-art segmentation quality, as we illustrate in the set of experiments with two large datasets.

6.
Med Image Anal ; 71: 102054, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33932751

RESUMO

The current COVID-19 pandemic overloads healthcare systems, including radiology departments. Though several deep learning approaches were developed to assist in CT analysis, nobody considered study triage directly as a computer science problem. We describe two basic setups: Identification of COVID-19 to prioritize studies of potentially infected patients to isolate them as early as possible; Severity quantification to highlight patients with severe COVID-19, thus direct them to a hospital or provide emergency medical care. We formalize these tasks as binary classification and estimation of affected lung percentage. Though similar problems were well-studied separately, we show that existing methods could provide reasonable quality only for one of these setups. We employ a multitask approach to consolidate both triage approaches and propose a convolutional neural network to leverage all available labels within a single model. In contrast with the related multitask approaches, we show the benefit from applying the classification layers to the most spatially detailed feature map at the upper part of U-Net instead of the less detailed latent representation at the bottom. We train our model on approximately 1500 publicly available CT studies and test it on the holdout dataset that consists of 123 chest CT studies of patients drawn from the same healthcare system, specifically 32 COVID-19 and 30 bacterial pneumonia cases, 30 cases with cancerous nodules, and 31 healthy controls. The proposed multitask model outperforms the other approaches and achieves ROC AUC scores of 0.87±0.01 vs. bacterial pneumonia, 0.93±0.01 vs. cancerous nodules, and 0.97±0.01 vs. healthy controls in Identification of COVID-19, and achieves 0.97±0.01 Spearman Correlation in Severity quantification. We have released our code and shared the annotated lesions masks for 32 CT images of patients with COVID-19 from the test dataset.


Assuntos
COVID-19 , Aprendizado Profundo , Triagem , COVID-19/diagnóstico por imagem , Humanos , Pandemias , SARS-CoV-2 , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA