Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 58(99): 13716-13719, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36315250

RESUMO

Using a catalyst-free one-pot polycondensation approach, a new donor-acceptor (D-A) based porous polyimide (PeTt-POP) photocatalyst was developed. PeTt-POP produced CH4 (125.63 ppm g-1 in 6 h) from CO2 under visible light irradiation in the gas-solid mode without the use of co-catalysts or sacrificial agents. The progress of the reaction and the corresponding intermediate species involved in the CO2 reduction were identified by operando DRIFTS experiments, from which a plausible reaction mechanism was proposed.

2.
ACS Appl Mater Interfaces ; 14(33): 37620-37636, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35944163

RESUMO

Anthropogenic carbon dioxide (CO2) emission is soaring day by day due to fossil fuel combustion to fulfill the daily energy requirements of our society. The CO2 concentration should be stabilized to evade the deadly consequences of it, as climate change is one of the major consequences of greenhouse gas emission. Chemical fixation of CO2 to other value-added chemicals requires high energy due to its stability at the highest oxidation state, creating a tremendous challenge to the scientific community to fix CO2 and prevent global warming caused by it. In this work, we have introduced a novel monomer-assembly-directed strategy to design va isible-light-responsive conjugated Zn-metalated porous organic polymer (Zn@MA-POP) with a dynamic covalent acyl hydrazone linkage, via a one-pot condensation between the self-assembled monomer 1,3,5-benzenetricarbohydrazide (TPH) and a Zn complex (Zn@COM). We have successfully explored as-synthesized Zn@MA-POP as a potential photocatalyst in visible-light-driven CO2 photofixation with styrene epoxide (SE) to styrene carbonate (SC). Nearly 90% desired product (SC) selectivity has been achieved with our Zn@MA-POP, which is significantly better than that for the conventional Zn@TiO2 (∼29%) and Zn@gC3N4 (∼26%) photocatalytic systems. The excellent light-harvesting nature with longer lifetime minimizes the radiative recombination rate of photoexcited electrons as a result of extended π-conjugation in Zn@MA-POP and increased CO2 uptake, eventually boosting the photocatalytic activity. Local structural results from a first-shell EXAFS analysis reveals the existence of a Zn(N2O4) core structure in Zn@MA-POP, which plays a pivotal role in activating the epoxide ring as well as capturing the CO2 molecules. An in-depth study of the POP-CO2 interaction via a density functional theory (DFT) analysis reveals two feasible interactions, Zn@MA-POP-CO2-A and Zn@MA-POP-CO2-B, of which the latter has a lower relative energy of 0.90 kcal/mol in comparison to the former. A density of states (DOS) calculation demonstrates the lowering of the LUMO energy (EL) of Zn@MA-POP by 0.35 and 0.42 eV, respectively, for the two feasible interactions, in comparison to Zn@COM. Moreover, the potential energy profile also unveils the spontaneous and exergonic photoconversion pathways for the SE to SC conversion. Our contribution is expected to spur further interest in the precise design of visible-light-active conjugated porous organic polymers for CO2 photofixation to value-added chemicals.

3.
Nanoscale ; 14(4): 1505-1519, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35029265

RESUMO

Heteroatom-rich porous-organic-polymers (POPs) comprising highly cross-linked robust skeletons with high physical and thermal stability, high surface area, and tunable pore size distribution have garnered significant research interest owing to their versatile functionalities in a wide range of applications. Here, we report a newly developed organogel-assisted porous-organic-polymer (POP) supported Cu catalyst (Cu@TpRb-POP). The organogel was synthesized via a temperature induced gelation strategy, employing Schiff-base coupling between 2,4,6-triformylphloroglucinol aldehyde (Tp) and pararosaniline base (Rb). The gel is subsequently transformed to hierarchical porous organic structures without the use of any additive, thereby offering advantageous features including extremely low density, high surface area, a highly cross-linked framework, and a heteroatom-enriched backbone of the polymer. During the semi-hydrogenation of terminal and internal alkynes, the Cu@TpRb-POP-B catalyst with Cu embedded in the TpRb-POP structure consistently demonstrated improved selectivity towards alkenes compared to Cu@TpRb-POP-A, which contains Cu NPs exposed at the exterior surfaces of the POP support. Additionally, Cu@TpRb-POP-B showed higher stability and reusability than Cu@TpRb-POP-A. The superior performance of the Cu@TpRb-POP-B catalyst is attributed to the steric hindrance effect, which controls the product selectivity, as well as the synergistic interaction between the heteroatom-rich POP framework and the embedded Cu NPs. Both the effects are corroborated by experimental characterization of the catalysts and density functional theory (DFT) calculations.

4.
Chem Commun (Camb) ; 57(69): 8550-8567, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34369958

RESUMO

Porous organic polymers (POPs) represent an emerging class of porous organic materials which mainly comprise organic building blocks that are interconnected via strong covalent bonds, thereby offering highly cross-linked frameworks with rigid structures and specific void spaces for accommodating guest molecules. In the past few years, POPs have garnered colossal research interest as nanoreactors for heterogeneous catalysis (thermal, photochemical, electrochemical, etc.) because of their intriguing characteristic features, such as high thermal and chemical stabilities, adjustable chemical functionalities, large surface areas, and tunable pore size distributions. This feature article provides an overview of existing research relating to diverse POP synthetic approaches (COFs, CTFs, and some amorphous POPs), the possible modification of the functionality of POPs, and their exciting application as next-generation nanoreactors. These POPs are extremely interesting, as they offer the potential for either metal-free or metalated polymer catalysts allowing photocatalytic CO2 reduction to solar-fuel, biofuel upgrades, the conversion of waste cooking oil to bio-oil, and clean H2 production from water, addressing many scientific and technological challenges and providing new opportunities for various specific topics in catalysis. Finally, we emphasize that the integration of various synthetic approaches and the application of POPs as nanoreactors will provide opportunities in the near future for the precision synthesis of functional materials with significant impact in both basic and applied research areas.


Assuntos
Estruturas Metalorgânicas/química , Catálise , Estruturas Metalorgânicas/síntese química , Porosidade
5.
ACS Appl Mater Interfaces ; 12(45): 50550-50565, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33111522

RESUMO

Porous organic polymers (POPs) constructed through covalent bonds have raised tremendous research interest because of their suitability to develop robust catalysts and their successful production with improved efficiency. In this work, we have designed and explored the properties and catalytic activity of a template-free-constructed, hydroxy (-OH) group-enriched porous organic polymer (Ph-POP) bearing functional Pd nanoparticles (Pd-NPs) by one-pot condensation of phloroglucinol (1,3,5-trihydroxybenzene) and terephthalaldehyde followed by solid-phase reduction with H2. The encapsulated Pd-NPs rested within well-defined POP nanocages and remained undisturbed from aggregation and leaching. This polymer hybrid nanocage Pd@Ph-POP is found to enable efficient liquid-phase hydrodeoxygenation (HDO) of acetophenone (AP) with high selectivity (99%) of ethylbenzene (EB) and better activity than its Pd@Al2O3 counterpart. Our investigation demonstrates a facile, scalable, catalyst-template-free methodology for developing novel porous organic polymer catalysts and next-generation efficient greener chemical processes from platform molecules to produce value-added chemicals. With the aid of comprehensive in situ ATR-IR spectroscopy experiments, it is suggested that EB can be more easily desorbed in a solution, reflecting from the much weaker but better-resolved signal at 1494 cm-1 in Pd@Ph-POP compared to that in Pd@Al2O3, which is the key determining factor in favoring an efficient catalytic mechanism. Density functional theory (DFT) calculations were performed to illustrate the detailed reaction network and explain the high catalytic activity observed for the fabricated Pd@Ph-POP catalyst in the HDO conversion of AP to EB. All of the hydrogenation routes, including direct hydrogenation by surface hydrogen, hydrogen transfer, and the keto-enol pathway, are evaluated, providing insights into the experimental observations. The presence of phenolic hydroxyl groups in the Ph-POP frame structure facilitates the hydrogen-shuttling mechanism for dehydration from the intermediate phenylethanol, which was identified as a crucial step for the formation of the final product ethylbenzene. Besides, weaker binding of the desired product ethylbenzene and lower coverage of surface hydrogen atoms on Pd@Ph-POP both contributed to inhibiting the overhydrogenation reaction and explained well the high yield of EB produced during the HDO conversion of AP on Pd@Ph-POP in this study.

6.
Nanoscale ; 12(46): 23301-23332, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33107552

RESUMO

Recent advances in nanotechnology, especially the development of integrated nanostructured materials, have offered unprecedented opportunities for photocatalytic CO2 reduction. Compared to bulk semiconductor photocatalysts, most of these nanostructured photocatalysts offer at least one advantage in areas such as photogenerated carrier kinetics, light absorption, and active surface area, supporting improved photochemical reaction efficiencies. In this review, we briefly cover the cutting-edge research activities in the area of integrated nanostructured catalysts for photochemical CO2 reduction, including aqueous and gas-phase reactions. Primarily explored are the basic principles of tailor-made nanostructured composite photocatalysts and how nanostructuring influences photochemical performance. Specifically, we summarize the recent developments related to integrated nanostructured materials for photocatalytic CO2 reduction, mainly in the following five categories: carbon-based nano-architectures, metal-organic frameworks, covalent-organic frameworks, conjugated porous polymers, and layered double hydroxide-based inorganic hybrids. Besides the technical aspects of nanostructure-enhanced catalytic performance in photochemical CO2 reduction, some future research trends and promising strategies are addressed.

7.
ACS Appl Mater Interfaces ; 11(27): 24140-24153, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31198035

RESUMO

Hydrodeoxygenation (HDO) is a promising route for the upgrading of bio-oils to eco-friendly biofuel produced from lignocellulose. Herein, we report the sequential synthesis of a hybrid nanocatalyst CoxP@POP, where substoichiometric CoxP nanoparticles are distributed in a porous organic polymer (POP) via solid-state phosphidation of the Co3O4@POP nanohybrid system. We also explored the catalytic activity of the above two nanohybrids toward the HDO of vanillin, a typical compound of lignin-derived bio-oil to 2-methoxy-4-methylphenol, which is a promising future biofuel. The CoxP@POP exhibited superior catalytic activity and selectivity toward desired product with improved stability compared to the Co3O4@POP. Based on advanced sample characterization results, the extraordinary selectivity of CoxP@POP is attributed to the strong interaction of the cation of the CoxP nanoparticle with the POP matrix and the consequent modifications of the electronic states. Through attenuated total reflectance-infrared spectroscopy, we have also observed different interaction strengths between vanillin and the two catalysts. The decreased catalytic activity of Co3O4@POP compared to CoxP@POP catalyst could be attributed to the stronger adsorption of vanillin over the Co3O4@POP catalyst. Also from kinetic investigation, it is clearly demonstrated that the Co3O4@POP has higher activation energy barrier than the CoxP@POP, which also reflects to the reduction of the overall efficiency of the Co3O4@POP catalyst. To the best of our knowledge, this is the first approach in POP-encapsulated cobalt phosphide catalyst synthesis and comprehensive study in establishing the structure-activity relationship in significant step-forwarding in promoting biomass refining.

8.
Chemistry ; 23(59): 14827-14838, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28837241

RESUMO

Development of an inexpensive, efficient and robust nanohybrid catalyst as a substitute for platinum in photoelectrocatalytic hydrogen production has been considered intriguing and challenging. In this study, the design and sequential synthesis of a novel cobalt sulfide nanoparticle grafted Porous Organic Polymer nanohybrid (CoSx @POP) is reported and used as an active and durable water-splitting photoelectrocatalyst in the hydrogen evolution reaction (HER). The specific textural and relevant chemical properties of as-synthesised nanohybrid materials (Co3 O4 @POP &CoSx @POP) were investigated by means of XRD, XPS, FTIR, 13 C CP MAS NMR, spectroscopy, HR-TEM, HAADF-STEM with the corresponding elemental mapping, FE-SEM and nitrogen physisorption studies. CoSx @POP has been evaluated as a superior photoelectrocatalyst in HER, achieving a current density of 6.43 mA cm-2 at 0 V versus the reversible hydrogen electrode (RHE) in a 0.5 m Na2 SO4 electrolyte which outperforms its Co3 O4 @POP analogue. It was found that the nanohybrid CoSx @POP catalyst exhibited a substantially enhanced catalytic performance of 1.07 µmol min-1 cm-2 , which is considered to be ca. 10 and 1.94 times higher than that of pristine POP and CoSx , respectively. Remarkable photoelectrocatalytic activity of CoSx @POP compared to Co3 O4 @POP toward H2 evolution could be attributed to intrinsic synergistic effect of CoSx and POP, leading to the formation of a unique CoSx @POP nanoarchitecture with high porosity, which permits easy diffusion of electrolyte and efficient electron transfer from POP to CoSx during hydrogen generation with a tunable bandgap, that straddles between the reduction and oxidation potential of water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA