Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(40): 14441-14450, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37747810

RESUMO

Sulfites can pollute the environment and pose a great risk to human health in daily life, so there is an urgent need to develop efficient and lightweight sulfite detection materials. In this study, metal-organic framework-5-NH2/urushiol/PVP nanofiber composite films were prepared by an electrospinning technique for the fluorescence detection of sulfites. The results showed that the composite film could resist sulfuric acid corrosion at a concentration of 80% and inactivate Escherichia coli and Staphylococcus aureus at a concentration of 99%, and its maximum tensile strength was increased from the initial 2.753 to 4.145 N. The composite film was sensitive and specific for the fluorescence detection of sulfite.

2.
Macromol Biosci ; 23(11): e2300233, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37483109

RESUMO

In this study, lacquer is gathered from a lacquer tree and rotary evaporation is used to remove impurities to obtain urushiol. Next, 10 mL of anhydrous ethanol serves as the solvent for blending polyvinylpyrrolidone (PVP) at a specified content (0.7 g and 0.2-0.7 g urushiol) to form an electrospinning solution. Electrospinning is carried out with a voltage of 18 kV to prepare PVP/urushiol nanofibrous membranes. At a ratio of 7/4, the PVP/urushiol nanofibrous membranes are not eroded in 98% sulfuric acid and these membranes also demonstrate a 50-60% antibacterial effect against Staphylococcus aureus and Escherichia coli. Moreover, the antibacterial effect can be boosted to 98% with the incorporation of zinc ions. The results indicate that anhydrous ethanol can remove the sensitization of urushiol from PVP/urushiol membranes. Furthermore, animal test results indicate that when rats are in contact with PVP/urushiol anhydrous ethanol for 48 h, their skins are free from dark brown skin allergy. The presence of PVP eliminates the sensitization of urushiol, and the nanofibrous membranes demonstrate low toxicity. Hence, urushiol is the only natural material that enables PVP to withstand 98% sulfuric acid as well as acquire hydrolyzability, thereby qualify PVP as a medical material.


Assuntos
Nanofibras , Povidona , Ratos , Animais , Povidona/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Zinco/farmacologia , Escherichia coli , Etanol/farmacologia
3.
Colloids Surf B Biointerfaces ; 229: 113442, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454442

RESUMO

Nowadays, the hydrogen dressing and electrostatic spun films widely used on wounds do not facilitate the permeability of the wound area and fail to achieve controlled drug delivery. Therefore, finding a wound dressing with both breathability and targeted drug delivery has remained an unmet challenge. Here, an oriented microstructure membrane with sustained drug release and robust antibacterial performance was constructed through the microfluidic spinning method. The multifunctional oriented membrane was prepared by loading ascorbic acid onto the zeolitic metal-organic framework-8 to develop drug delivery nanomaterial zeolitic metal-organic framework-8 @ascorbic acid (ZIF-8 @AA) and then mixing ZIF-8 @AA with polyvinyl pyrrolidone (PVP) solution via microfluidic technology, which produced an oriented microfiber member. In addition, the spinning parameters, including the fluid content, rotation speed, and flow rate, on microfiber diameter were evaluated. The constructed oriented membrane had bactericidal efficiencies of 82.94% ± 2.79% and 95.96% ± 1.54% against E. coli and S. aureus, respectively. After five days, the membrane still has a sustained release. Moreover, the fabricated membrane also has good biocompatibility and hemocompatibility in vitro. The oriented arrangement strategy provides a promising approach for wound healing materials in targeted drug delivery. Furthermore, this strategy offers a feasible idea for loading active materials into substrates for disease treatment in the biomedical field.


Assuntos
Estruturas Metalorgânicas , Zeolitas , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/química , Zeolitas/química , Ácido Ascórbico/farmacologia , Microfluídica , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia
4.
J Funct Biomater ; 14(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37233358

RESUMO

A significant amount of research has been conducted on applying functional materials as surgical sutures. Therefore, research on how to solve the shortcomings of surgical sutures through available materials has been given increasing attention. In this study, hydroxypropyl cellulose (HPC)/PVP/zinc acetate nanofibers were coated on absorbable collagen sutures using an electrostatic yarn winding technique. The metal disk of an electrostatic yarn spinning machine gathers nanofibers between two needles with positive and negative charges. By adjusting the positive and negative voltage, the liquid in the spinneret is stretched into fibers. The selected materials are toxicity free and have high biocompatibility. Test results indicate that the nanofiber membrane comprises evenly formed nanofibers despite the presence of zinc acetate. In addition, zinc acetate can effectively kill 99.9% of E. coli and S. aureus. Cell assay results indicate that HPC/PVP/Zn nanofiber membranes are not toxic; moreover, they improve cell adhesion, suggesting that the absorbable collagen surgical suture is profoundly wrapped in a nanofiber membrane that exerts antibacterial efficacy and reduces inflammation, thus providing a suitable environment for cell growth. The employment of electrostatic yarn wrapping technology is proven effective in providing surgical sutures with antibacterial efficacy and a more flexible range of functions.

5.
Int J Biol Macromol ; 243: 124956, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245751

RESUMO

Directional drug delivery and sufficient strength are two conditions that need to be met for wound dressing. In this paper, an oriented fibrous alginate membrane with sufficient strength was constructed via coaxial microfluidic spinning, and zeolitic imidazolate framework-8/ascorbic acid was used to realize drug delivery and antibacterial activity. The effects of the process parameters of the coaxial microfluidic spinning on the mechanical properties of the alginate membrane were discussed. In addition, it was found that the antimicrobial activity mechanism of zeolitic imidazolate framework-8 was attributed to the disruptive effect of reactive oxygen species (ROS) on bacteria, and the quantitative amount of generated ROS were evaluated by detecting •OH and H2O2. Furthermore, a mathematical drug diffusion model was established and showed high consistency with the experimental data (R2 = 0.99). This study provides a new idea for the preparation of dressing materials with high strength and directional drug delivery and also provides some guidance for the development of coaxial microfluidic spin technology to be used in functional materials for drug release.


Assuntos
Alginatos , Microfluídica , Liberação Controlada de Fármacos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Antibacterianos/farmacologia
6.
Carbohydr Polym ; 312: 120792, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059532

RESUMO

Due to the large specific surface area and rich pore structure, chitosan nanofiber membrane has many advantages over conventional gel-like or film-like products. However, the poor stability in acidic solutions and relatively weak antibacterial activity against Gram-negative bacteria severely restrict its use in many industries. Here, we present a chitosan-urushiol composite nanofiber membrane prepared by electrospinning. Chemical and morphology characterization revealed that the formation of chitosan-urushiol composite involved the Schiff base reaction between catechol and amine groups and the self-polymerization of urushiol. The unique crosslinked structure and multiple antibacterial mechanisms endowed the chitosan-urushiol membrane with outstanding acid resistance and antibacterial performance. After immersion in HCl solution at pH 1, the membrane maintained its intact appearance and satisfactory mechanical strength. In addition to its good antibacterial performance against Gram-positive Staphylococcus aureus (S. aureus), the chitosan-urushiol membrane exhibited synergistic antibacterial activity against Gram-negative Escherichia coli (E. coli) that far exceeded that of neat chitosan membrane and urushiol. Moreover, cytotoxicity and hemolysis assays revealed that the composite membrane had good biocompatibility similar to that of neat chitosan. In short, this work provides a convenient, safe, and environmentally friendly method to simultaneously enhance the acid resistance and broad-spectrum antibacterial activity of chitosan nanofiber membranes.


Assuntos
Quitosana , Nanofibras , Quitosana/farmacologia , Quitosana/química , Nanofibras/química , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Catecóis
7.
Polymers (Basel) ; 15(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36850236

RESUMO

In this study, nonwoven fabrics, rigid polyurethane foam (RPUF), Basalt woven fabrics, and an aluminum foil film mold are used to produce multi-functional composite sheets with flame-retardant, sound-absorbing, and electromagnetic-shielding functions. The nonwoven layer is composed of Nomex fibers, flame-retardant PET fibers, and low-melting-point (LMPET) fibers via the needle rolling process. The optimal Nomex fiber/flame-retardant PET fiber/LMPET fiber (N/F/L) nonwoven fabrics are then combined with rigid polyurethane (PU) foam, Basalt woven fabric, and an aluminum foil film mold, thereby producing nonwoven/rigid polyurethane foam/Basalt woven fabric composite sheets that are wrapped in the aluminized foil film. The test results indicate that formed with a foaming density of 60 kg/m3 and 10 wt% of a flame retardant, the composite sheets exhibit electromagnetic interference shielding efficacy (EMI SE) that exceeds 40 dB and limiting oxygen index (LOI) that is greater than 26. The efficient and highly reproducible experimental design proposed in this study can produce multifunctional composite sheets that feature excellent combustion resistance, sound absorption, and EMI SE and are suitable for use in the transportation, industrial factories, and building wall fields.

8.
Biomed Mater ; 18(1)2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36576095

RESUMO

As the main inorganic component of human bones and teeth, hydroxyapatite (HA), with excellent bioactivity and biocompatibility, shows great potential in the bone tissue engineering field. Marine mussel-inspired polydopamine (PDA) possesses unique functional groups and thus can absorb the calcium ions from extracellular fluid, thereby triggering the precipitation of HA. This study is based on a two-step strategy. Using the chemical activity of PDA, polyvinyl alcohol/polylactic acid (PVA/PLA) braids were coated with a PDA layer that served as a template for the electrochemical deposition of a HA layer. The test results indicate that the resulting HA crystals were assembled on the polymer fibers in an urchin-like mannerwith a stratified structure. Subsequently, the HA/PDA-PVA/PLA braided bone scaffolds were immersed in simulated body fluid for ten days, after which the bone scaffolds were found to be completely coated with HA, indicating a good biomineralization capability. Cell activity of HA/PDA-PVA/PLA scaffolded by dopamine-assisted electrodeposition was 178.8% than that of PVA/PLA braids. This HA coating layer inspired by biochemical strategies may be useful in the field of bone tissue engineering.


Assuntos
Durapatita , Polímeros , Humanos , Durapatita/química , Polímeros/química , Poliésteres/química , Indóis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
9.
Polymers (Basel) ; 14(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36432943

RESUMO

Conventional personal protective equipment is usually made in multilayer stacks, and appears clumsy and uncomfortable, offering limited protection. In recent years, a newly-developed nanosuspension, shear thickening fluids (STFs), has been commonly applied to buffer and shock absorption. In this study, nonwoven fabrics are impregnated with 30 wt%, 35 wt%, or 40 wt% STF in order to strengthen the interaction among fibers. The resultant STF composite nonwoven fabrics are observed for their morphology, and tested for their tensile strength, tearing strength, bursting strength, and dynamic impact resistance, thereby examining the damage resistance of the materials. The SEM images indicate that the fibers are adhered with a tremendous amount of silicon dioxide (SiO2) particulates with a rise in the STF concentration, due to which the smooth fibers become rough. Moreover, the mechanical test results indicate that a rise in the STF concentration improves the frictional force during the relative motion of fibers, which subsequently mechanically strengthens the STF composite nonwoven fabrics. The dynamic impact test results show that when the STF concentration increases from 30 wt% to 35 wt%, the materials exhibit dynamic impact strength that is significantly improved to 51.9%. Nonetheless, significant improvement in dynamic impact strength is absent when the STF concentration increases to 40 wt%. To sum up, a critical value of STF concentration has a positive influence over the mechanical strengths of STF composite nonwoven fabrics.

10.
Polymers (Basel) ; 14(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36365465

RESUMO

In the wake of increasing demands on skin health, we propose simple, natural, and safe dry facial masks that restrict melanin synthesis. Phyllanthus emblica (P. emblica) is made into powders via a low-temperature extraction and freeze-drying process to serve as a natural agent. Next, it is added to mixtures containing Polyvinylpyrrolidone (PVP) and Chitosan (CS), after which the blends are electrospun into PVP/CS/P. emblica nanofiber membrane dry facial masks using the electrospinning technique. The dry facial masks are evaluated using the calibration analysis method, extraction rate test, scanning electron microscopy (SEM), release rate test, tyrosinase inhibition assay, biocompatibility test, and anti-inflammatory capacity test. Test results indicate that when the electrospinning mixture contains 29.0% P. emblica, the nanofibers have a diameter of ≤214.27 ± 74.51 nm and a water contact angle of 77.25 ± 2.21. P. emblica is completely released in twenty minutes, and the tyrosinase inhibition rate reaches 99.53 ± 0.45% and the cell activity ≥82.60 ± 1.30%. Moreover, the anti-inflammatory capacity test results suggest that dry facial masks confine inflammatory factors. PVP/CS/P. emblica nanofiber dry facial masks demonstrate excellent tyrosinase inhibition and are hydrophilic, biocompatible, and inflammation-free. The dry facial masks are a suitable material that is worthwhile exploring and applying to the cosmetic field.

11.
Polymers (Basel) ; 14(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36365664

RESUMO

Bone tissue may suffer from bone injury and bone defects due to accidents or diseases. Since the demand for autologous bone and allograft tissue far exceeds the supply, bone scaffolds have taken the lead. The use of bone scaffolds is one of the measures to help heal or regenerate bone tissue. Therefore, a new bone scaffold was proposed in this study, which has a simpler preparation process and stronger performance. This study proposes bone scaffolds with an attempt to use polymers that are synthesized separately with three types of minerals as the filler using the microwave foaming method as follows. A 0.1 wt% of montmorillonite (MMT), zinc oxide (ZnO), or titanium dioxide (TiO2) is added to chitosan (CS)/gelatin mixtures, respectively, after which sodium bicarbonate is added as a foaming agent, thereby forming porous gels. The polymer synthesized from three minerals was used as filler. The following microwave foaming method was adopted: 0.1 wt% MMT, ZnO, or TiO2 was added to the CS/gelatin mixture, and then sodium bicarbonate was added as a foaming agent to form a porous gel. Next, porous gels and polycaprolactone were combined in a self-made mold in order to form bone scaffolds. A stereo microscope is used to observe the morphology of bone scaffolds, after which the pore size analysis, pore connectivity, swell property, porosity, and compressive strength are tested, examining the effects of the mineral type on bone scaffolds. The test results indicate that with MMT being the filler and sodium bicarbonate being the foaming agent, the resulting bone scaffolds yield a porous structure with a pore size between 120 µm and 370 µm. Besides, the incorporation of polycaprolactone also provides samples of 1MCG-P, 2MCG-P, and 5MCG-P with a certain compressive strength of 150-170 MPa. To sum up, the test results substantiate that a combination of the microwave foaming method and MMT generates a porous structure for bone scaffolds (1MCG-P, 2MCG-P, and 5MCG-P), involving a porosity of 38%, an inter-connected porous structure, and the compressive strength that exceeds 150 MPa.

12.
Environ Res ; 215(Pt 3): 114355, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36154855

RESUMO

Removal of organic solvents and heavy metals in effluents is of great significance to environmental pollution control and ecological civilization construction. pH-responsive materials have unique advantages in treating complicated oily wastewater. In this work, an intelligent pH-responsive nonwoven fabric with excellent reversible wettability was prepared. The pH-sensitive polymer was synthesized by free radical polymerization (FRP) technique, then dipped with SiO2 on PP fabric. The particular molecular structure of poly (dimethylaminoethyl methacrylate) (PDMAEMA) enabled the fabric surface to switch wettability rapidly between hydrophilic/underwater oleophobic and oleophobic/hydrophobic under pH stimulus and exhibit controllable selective separation of various oil/water mixtures. Furthermore, the fabric removed Pb2+ efficiently under a wide pH range. The experimetal results showed that the separation flux reached 19,229 ± 1656.43 L-h-1-m-2 for water and 19,342 ± 1796.77 L-m-2-h-1 for n-hexane. Besides, the obtained fabric effectively realized the separation and collection process of complex ternary mixtures. The fabric removed Pb2+ in solutions with efficiency up to 90.83%. After immersing in acid and alkali solutions for 24 h, no significant damage to the surface wettability. This economical and intelligent fabric is able to meet the different separation purposes of industrial wastewaters with complex compositions.


Assuntos
Metais Pesados , Águas Residuárias , Álcalis , Concentração de Íons de Hidrogênio , Chumbo , Metacrilatos , Polímeros , Dióxido de Silício , Solventes , Águas Residuárias/química , Molhabilidade
13.
Polymers (Basel) ; 14(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35808581

RESUMO

In this study, stainless steel (SS) filaments are wrapped in Ge fibers to form core-spun yarns. The yarns along with 500 D polyester (PET) fibers undergo weaving, thereby forming functional woven fabrics. The experiment is composed of two parts:yarns and fabrics. The yarns are twisted with TPI of 8, 9, 10, 11, and 12, and then tested for tensile strength and tensile elongation. The yarns possess mechanical properties that are dependent on the TPI-the higher the TPI, the better the mechanical properties. The maximal mechanical properties occur when the core-spun yarns are made of 12 TPI where the maximal tensile strength is 5.26 N and the lowest elongation is 43.2%. As for the functional woven fabrics, they are made of Ge/SS core-spun yarns as the weft yarns and 500 D PET yarns as the warp yarns. The tensile strength, tensile elongation, negative ion release, electromagnetic interference shielding effectiveness (EMI SE), and air permeability tests are conducted, determining the optimal woven fabrics. The 12 TPI core-spun yarns provide the woven fabrics with the maximal tensile strength of 153.6 N and the optimal elongation at break of 10.08%. In addition, the woven fabrics made with 8 or 9 TPI core-spun yarns exhibit an optimal EMI SE of 41 dB, an optimal air permeability of 212 cm3/cm2/s, and an optimal release amount of negative ion of 550-600 ions/cc. The proposed woven fabrics have a broad range of applications, such as functional garments and bedding.

14.
Polymers (Basel) ; 14(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35746090

RESUMO

This study investigated eco-friendly antibacterial medical protective clothing via the nonwoven process and characteristic evaluations. Firstly, Tencel® fibers and low melting point polyester (LMPET) fibers (re-sliced and granulated from recycled PET bottles) were mixed at different ratios and then needle punched at diverse needle rolling depths. The influences of manufacturing parameters on the Tencel®/LMPET nonwoven fabrics were examined in terms of mechanical properties, water vapor transmission rate, and stiffness. Next, Tencel®/LMPET nonwoven fabrics were combined with thermoplastic polyurethane (TPU)/Triclosan antibacterial membranes that contained different contents of triclosan using melt processing technology. The resulting Tencel®/LMPET/TPU/Triclosan composites were characterized via different measurements; an optimal bursting strength of 86.86 N, an optimal horizontal tensile strength of 41.90 N, and an optimal stiffness along the MD and CD of 8.60 cm were recorded. Furthermore, the Tencel®/LMPET/TPU/Triclosan composites exhibited a distinct inhibition zone in the antibacterial measurement, and the hydrostatic pressure met the requirements of the EN 14126:2003 and GB 19082-200 disposable medical protective gear test standards.

15.
Polymers (Basel) ; 14(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35566933

RESUMO

To reduce the bleeding time and to shorten the surgery time are vital to patients' prog-nosis, therefore, in this study, high moisture absorption nonwoven composites are proposed to attain hemostasis in time. Polyacrylate fiber and Tencel® fibers at different blending ratios (10:90, 20:80, 30:70, 40:60, and 50:50) are used to form PT composite nonwoven. Next, composed of a 50:50 ratio, PT composite nonwoven exhibits the maximal vertical wicking height of 4.4 cm along the cross direction. Additionally, the UV-Vis absorption spectra analysis shows that at absorption waves of 413-415 nm, the occurring of distinct peaks suggests the presence of nanoparticles. The XRD patterns indicate the presence of silver nanoparticles with corresponding crystal planes of characteristic peaks at (111), (200), and (220). Polyacrylate/Tencel® nonwoven composites exhibit comparable adsorption capacity of blood and water molecules. In particular, 30PT composite nonwoven outperforms the control group, exhibiting 3.8 times and 4.7 times greater the water absorption and blood absorption, respectively. Moreover, a great number of red blood cells with a size of 4-6 µm agglomerate among fibers as observed in SEM images, while 6hr-PT composite dressing demonstrates the optimal antibacterial efficacy against Escherichia coli and Staphylococcus aureus, proven by the zone of inhibition being 1.9 mm and 0.8 mm separately. When in contact with plasma, hemostasis composites have plasma hemostasis prothrombin time of 97.9%, and activated partial thromboplastin time of 96.7%. As for animal hemostasis model, the arteria over the rats' thigh bones is cut open perpendicularly, generating mass arteria hemorrhage. To attain hemostasis, it takes 46.5% shorter time when using composite dressings (experimental group) than the control group.

16.
Polymers (Basel) ; 14(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566945

RESUMO

In this study, we employed electrospinning technology and in situ polymerization to prepare wearable and highly sensitive PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors. PEDOT, PEDOT:PSS, and TiO2 were prepared via in situ polymerization and tested for characteristic peaks using energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FT-IR), then characterized using a scanning electron microscope (SEM), a four-point probe resistance measurement, and a gas sensor test system. The gas sensitivity was 3.46-12.06% when ethanol with a concentration between 12.5 ppm and 6250 ppm was measured; 625 ppm of ethanol was used in the gas sensitivity measurements for the PEDOT/composite conductive woven fabrics, PVP/PEDOT:PSS nanofiber membranes, and PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors. The latter exhibited the highest gas sensitivity, which was 5.52% and 2.35% greater than that of the PEDOT/composite conductive woven fabrics and PVP/PEDOT:PSS nanofiber membranes, respectively. In addition, the influence of relative humidity on the performance of the PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors was examined. The electrical sensitivity decreased with a decrease in ethanol concentration. The gas sensitivity exhibited a linear relationship with relative humidity lower than 75%; however, when the relative humidity was higher than 75%, the gas sensitivity showed a highly non-linear correlation. The test results indicated that the PVP/PEDOT:PSS/TiO2 micro/nanofiber gas sensors were flexible and highly sensitive to gas, qualifying them for use as a wearable gas sensor platform at room temperature. The proposed gas sensors demonstrated vital functions and an innovative design for the development of a smart wearable device.

17.
Polymers (Basel) ; 14(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35267736

RESUMO

Noise pollution is the primary environmental issue that is increasingly deteriorated with the progress of modern industry and transportation; hence, the purpose of this study is to create flexible PU foam with mechanical properties and sound absorption. In this study, hollow ceramic microsphere (HCM) is used as the filler of polyurethane (PU) foam for mechanical reinforcement. The sound absorption efficacy of PU pores and the hollow attribute of HCM contribute to a synergistic sound absorption effect. HCM-filled PU foam is evaluated in terms of surface characteristic, mechanical properties, and sound absorption as related to the HCM content, determining the optimal functional flexible PU foam. The test results indicate that the presence of HCM strengthens the stability of the cell structure significantly. In addition, the synergistic effect can be proven by a 2.24 times greater mechanical strength and better sound absorption. Specifically, with more HCM, the flexible PU foam exhibits significantly improved sound absorption in high frequencies, suggesting that this study successfully generates functional PU foam with high mechanical properties and high sound absorption.

18.
Polymers (Basel) ; 14(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35267878

RESUMO

Electrospinning is an efficient method of producing nanofibers out of polymers that shows a great potential for the filtration territory. Featuring water-soluble chitosan (WS-CS), a low-pollution process and a self-made needleless machine, PVA/WS-CS nanofibrous membranes were prepared and evaluated for nanofiber diameter, bacteriostatic property, filtration efficiency, pressure drop, and quality factor. Test results indicate that the minimal fiber diameter was 216.58 ± 58.15 nm. Regardless of the WS-CS concentration, all of the PVA/WS-CS nanofibrous membranes attained a high porosity and a high water vapor transmission rate (WVTR), with a pore size of 12.06-22.48 nm. Moreover, the membranes also exhibit bacteriostatic efficacy against Staphylococcus aureus, an optimal quality factor of 0.0825 Pa-1, and a filtration efficiency as high as 97.0%, that is 72.5% higher than that of common masks.

19.
Polymers (Basel) ; 14(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335510

RESUMO

Medical protective clothing is the first line of defense for medical staff, which makes the acquisition of protection and multiple function challenging. When it comes to contagious diseases, the physical properties of protective clothing are deemed the top priority and, subsequently, they have significant meaning for the structural design, production cost evaluation, convenient production, and innovation. In this study, nonwoven technology is employed to produce matrices in which mechanical properties are supported by Tencel fibers and recycled Kevlar fibers. Next, the electrostatic spinning is conducted to generate breathable and waterproof films. The nonwoven fabrics and membranes are combined to have diverse functions, forming lay-up compound matrices for medical protective clothing. Moreover, measurements are conducted to characterize the lay-up compound matrices in terms of the tensile strength, tearing strength, bursting strength, puncture resistance, stiffness, air-permeable property, surface resistance, comfort performance, sub-micron particulate filtration efficiency, and the penetration of synthetic blood. As for the nonwoven fabrics, the mechanical properties are significantly improved after Kevlar fibers are incorporated. The tensile strength is (62.6 ± 2.4) N along the machine direction (MD) and (50.1 ± 3.1) N along the cross machine direction (CD); the tearing strength is (29.5 ± 1.6) N along the MD and (43.0 ± 1.7) N along the CD; the bursting strength is (365.8 ± 5.0) kPa; and the puncture resistance is (22.6 ± 1.0) N. Moreover, the lay-up compound matrices exhibit a stiffness of (14.7 ± 0.2) cm along the MD and (14.6 ± 0.1) cm along the CD, a surface resistance of (2.85 × 109 ± 0.37 × 109) Ω, an air-permeable property of (45.4 ± 2.3) cm3/s/cm2, and sub-micron particulate filtration efficiency of over 98%. In the measurement for penetration of synthetic blood, the K40/PAN/TPU group prevents the synthetic blood from penetration. Hence, the incorporation of recycled Kevlar fibers and lay-up compound technique creates good physical properties, an appropriate comfort attribute, and functions, which suggests that this study provides a greater diversity and new concepts for the production of medical protective clothing.

20.
Polymers (Basel) ; 14(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335512

RESUMO

In this study, a low-melting-point polyester nonwoven fabric (L), a nylon spacer fabric (N), and a carbon fiber woven fabric (C) are laminated in different orders and then needle-bonded at a depth of 15.0 cm to form NLC, NLN, CLC, and CLN composites with a sandwich construction. Regardless of the lamination order, four composite types exhibit high tensile strengths and tearing strengths. Based on the ASTM D4935-18 test standard, the electromagnetic wave shielding measurement is conducted in a frequency range of 1~3 GHz. The two groups-NLC and CLN-demonstrate different electromagnetic wave shields, which are -45~-65 dB for the former, and -60 dB for the latter. According to FTTS-FA-003, in the specified requirements of the test method for electromagnetic shielding textiles, the proposed composites achieve level III, which is the highest standard, and are thus qualified for use in the aviation, construction, and commerce fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...