Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 373(6561): 1336-1340, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34529487

RESUMO

Microbial fuel cells (MFCs) can directly convert the chemical energy stored in organic matter to electricity and are of considerable interest for power generation and wastewater treatment. However, the current MFCs typically exhibit unsatisfactorily low power densities that are largely limited by the sluggish transmembrane and extracellular electron-transfer processes. Here, we report a rational strategy to boost the charge-extraction efficiency in Shewanella MFCs substantially by introducing transmembrane and outer-membrane silver nanoparticles. The resulting Shewanella-silver MFCs deliver a maximum current density of 3.85 milliamperes per square centimeter, power density of 0.66 milliwatts per square centimeter, and single-cell turnover frequency of 8.6 × 105 per second, which are all considerably higher than those of the best MFCs reported to date. Additionally, the hybrid MFCs feature an excellent fuel-utilization efficiency, with a coulombic efficiency of 81%.


Assuntos
Fontes de Energia Bioelétrica , Nanopartículas Metálicas , Shewanella/metabolismo , Prata , Biofilmes , Espectroscopia Dielétrica , Impedância Elétrica , Eletricidade , Eletrodos , Elétrons , Grafite , Shewanella/ultraestrutura
2.
ACS Cent Sci ; 4(5): 590-599, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29806005

RESUMO

The development of future sustainable energy technologies relies critically on our understanding of electrocatalytic reactions occurring at the electrode-electrolyte interfaces, and the identification of key reaction promoters and inhibitors. Here we present a systematic in situ nanoelectronic measurement of anionic surface adsorptions (sulfates, halides, and cyanides) on ultrathin platinum nanowires during active electrochemical processes, probing their competitive adsorption behavior with oxygenated species and correlating them to the electrokinetics of the oxygen reduction reaction (ORR). The competitive anionic adsorption features obtained from our studies provide fundamental insight into the surface poisoning of Pt-catalyzed ORR kinetics by various anionic species. Particularly, the unique nanoelectronic approach enables highly sensitive characterization of anionic adsorption and opens an efficient pathway to address the practical poisoning issue (at trace level contaminations) from a fundamental perspective. Through the identified nanoelectronic indicators, we further demonstrate that rationally designed competitive anionic adsorption may provide improved poisoning resistance, leading to performance (activity and lifetime) enhancement of energy conversion devices.

3.
Adv Mater ; 29(21)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28370460

RESUMO

A solid-state thermoelectric device is attractive for diverse technological areas such as cooling, power generation and waste heat recovery with unique advantages of quiet operation, zero hazardous emissions, and long lifetime. With the rapid growth of flexible electronics and miniature sensors, the low-cost flexible thermoelectric energy harvester is highly desired as a potential power supply. Herein, a flexible thermoelectric copper selenide (Cu2 Se) thin film, consisting of earth-abundant elements, is reported. The thin film is fabricated by a low-cost and scalable spin coating process using ink solution with a truly soluble precursor. The Cu2 Se thin film exhibits a power factor of 0.62 mW/(m K2 ) at 684 K on rigid Al2 O3 substrate and 0.46 mW/(m K2 ) at 664 K on flexible polyimide substrate, which is much higher than the values obtained from other solution processed Cu2 Se thin films (<0.1 mW/(m K2 )) and among the highest values reported in all flexible thermoelectric films to date (≈0.5 mW/(m K2 )). Additionally, the fabricated thin film shows great promise to be integrated with the flexible electronic devices, with negligible performance change after 1000 bending cycles. Together, the study demonstrates a low-cost and scalable pathway to high-performance flexible thin film thermoelectric devices from relatively earth-abundant elements.

4.
ACS Nano ; 10(11): 9919-9926, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27787972

RESUMO

The electrical conductivity measured in Shewanella and Geobacter spp. is an intriguing physical property that is the fundamental basis for possible extracellular electron transport (EET) pathways. There is considerable debate regarding the origins of the electrical conductivity reported in these microbial cellular structures, which is essential for deciphering the EET mechanism. Here, we report systematic on-chip nanoelectronic investigations of both Shewanella and Geobacter spp. under physiological conditions to elucidate the complex basis of electrical conductivity of both individual microbial cells and biofilms. Concurrent electrical and electrochemical measurements of living Shewanella at both few-cell and the biofilm levels indicate that the apparent electrical conductivity can be traced to electrochemical-based electron transfer at the cell/electrode interface. We further show that similar results and conclusions apply to the Geobacter spp. Taken together, our study offers important insights into previously proposed physical models regarding microbial conductivities as well as EET pathways for Shewanella and Geobacter spp.


Assuntos
Condutividade Elétrica , Geobacter , Nanotecnologia , Shewanella , Fontes de Energia Bioelétrica , Biofilmes , Eletrodos , Transporte de Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...