Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Med Chem ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38409699

RESUMO

INTRODUCTION: Metformin, a biguanide on the WHO's list of essential medicines has a long history of 50 years or more in treating hyperglycemia, and its therapeutic saga continues beyond diabetes treatment. Glucoregulatory actions are central to the physiological effects of metformin; surprisingly, the precise mechanism with which metformin regulates glucose metabolism is not thoroughly understood yet. METHOD: The main aim of this review is to explore the recent implications of metformin in hepatic gluconeogenesis, AMPKs, and SHIP2 and subsequently to elucidate the metformin action across intestine and gut microbiota. We have searched PubMed, google scholar, Medline, eMedicine, National Library of Medicine (NLM), clinicaltrials.gov (registry), and ReleMed for the implications of metformin with its updated role in AMPKs, SHIP2, and hepatic gluoconeogenesis, and gut microbiota. In this review, we have described the efficacy of metformin as a drug repurposing strategy in modulating the role of AMPKs and lysosomal-AMPKs, and controversies associated with metformin. RESULT: Research suggests that biguanide exhibits hormetic effects depending on the concentrations used (micromolar to millimolar). The primary mechanism attributed to metformin action is the inhibition of mitochondrial complex I, and subsequent reduction of cellular energy state, as observed with increased AMP or ADP ratio, thereby metformin can also activate the cellular energy sensor AMPK to inhibit hepatic gluconeogenesis. However, new mechanistic models have been proposed lately to explain the pleiotropic actions of metformin; at low doses, metformin can activate lysosomal-AMPK via the AXIN-LKB1 pathway. Conversely, in an AMPK-independent mechanism, metformin-induced elevation of AMP suppresses adenylate cyclase and glucagon-activated cAMP production to inhibit hepatic glucose output by glucagon. Metformin inhibits mitochondrial glycerophosphate dehydrogenase; mGPDH, and increases the cytosolic NADH/NAD+, affecting the availability of lactate and glycerol for gluconeogenesis. Metformin can inhibit Src homology 2 domain-containing inositol 5-phosphatase 2; SHIP2 to increase the insulin sensitivity and glucose uptake by peripheral tissues. CONCLUSION: In addition, new exciting mechanisms suggest the role of metformin in promoting beneficial gut microbiome and gut health; metformin regulates duodenal AMPK activation, incretin hormone secretion, and bile acid homeostasis to improve intestinal glucose absorption and utilization.

2.
Curr Pharm Des ; 29(30): 2408-2425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37861038

RESUMO

BACKGROUND: Platinum derivatives are chemotherapeutic agents preferred for the treatment of cancers including breast cancer. Oxaliplatin is an anticancer drug that is in phase II studies to treat metastatic breast cancer. However, its usage is constrained by chemoresistance and dose-related side effects. OBJECTIVE: The objective of this study is to examine the combinatorial efficacy of brusatol, an Nrf2 blocker, with oxaliplatin (a proven FN3K blocker in our study) in mitigating breast cancer growth in vitro. METHODS: We performed cytotoxicity assays, combination index (CI) analysis, colony formation assays, apoptosis assays, and Western blotting. RESULTS: Results of our study described the chemosensitizing efficacy of brusatol in combination with lowdose oxaliplatin against breast cancer through synergistic effects in both BT-474 and T47D cells. A significant mitigation in the migration rate of these cancer cells was observed with the combination regimen, which is equivalent to the IC-50 dose of oxaliplatin (125 µM). Furthermore, ROS-mediated and apoptotic modes of cell death were observed with a combinatorial regimen. Colony formation of breast cancer cell lines was mitigated with a combinatorial regimen of bursatol and oxaliplatin than the individual treatment regimen. FN3K expression downregulated with oxaliplatin in T47D cells. The mitigation of FN3K protein expression with a combination regimen was not observed but the Nrf2 downstream antioxidant signaling proteins were significantly downregulated with a combination regimen similar to individual drug regimens. CONCLUSION: Our study concluded the combination efficacy of phytochemicals like brusatol in combination with low-dose oxaliplatin (FN3K blocker), which could enhance the chemosensitizing effect in breast cancer and minimize the overall dose requirement of oxaliplatin.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Oxaliplatina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral
3.
Curr Pharm Biotechnol ; 24(13): 1603-1612, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843370

RESUMO

Sera obtained from convalescent individuals, and vaccinated individuals can induce low neutralizing efficacy against variants of concerns (VOCs) of SARS-CoV-2. In addition, the majority of COVID-19 vaccines are less efficacious against VOCs when compared to their efficacy against the original virus. Immune escape is one of the significant mechanisms observed during SARS-CoV-2 infection due to the substantial mutational capacity of VOCs such as B.1.1.7, P.1, B.1.351, B.1.617.2, C.37, and B.1.621. Omicron, a novel strain of SARS-CoV-2, also referred to as B.1.1.529, was identified in South Africa. This variant is a potential new VOC by the World Health Organization (WHO), and confirmed cases have been arising across several nations due to its rapid spreading ability. Omicron variant can acquire substantial immune escape following Delta, Beta/Gamma D614G VOCs and subsequently facilitating potential infectivity due to its enhanced ACE2 binding ability. The Omicron variant is a highly mutated variant accompanied by higher transmissibility and immune evasion. This mini review describes the ability of VOCs to acquire immune escape and also describes the comparative neutralization efficacy of several vaccines, including Booster doses against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Mutação , Anticorpos Neutralizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA