Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Adv ; 4(23): 6321-6332, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38021465

RESUMO

There is a growing demand for new fluorescent small molecule dyes for solid state applications in the photonics and optoelectronics industry. Thiazolo[5,4-d]thiazole (TTz) is an organic heterocycle moiety which has previously shown remarkable properties as a conjugated polymer and in solution-based studies. For TTz-based small molecules to be incorporated in solid-state fluorescence-based optical devices, a thorough elucidation of their structure-photophysical properties needs to be established. Herein, we have studied four TTz-based materials functionalized with alkyl appendages of varying carbon chain lengths. We report the single crystal structures of the TTz derivatives, three of which were previously unknown. The packing modes of the crystals reveal that molecular arrangements are largely governed by a chorus of synergistic intermolecular non-covalent interactions. Three crystals packed in herringbone mode and one crystal packed in slipped stacks proving that alkyl appendages modulate structural organization in TTz-based materials. Steady state and time-resolved photophysical properties of these crystals were studied via diffuse-reflectance, micro-Raman, and photoluminescence spectroscopy. The crystals fluoresce from orange-red to blue spanning through the whole gamut of the visible spectrum. We have established that photophysical properties are a function of crystal packing in symmetrically substituted TTz-based materials. This correlation was then utilized to fabricate crystalline blends. We demonstrate, for the first time, that symmetrically substituted donor-acceptor-donor TTz-based materials can be used for phosphor-converted color-tuning and white-light emission. Given the cost effectiveness, ease of synthesis and now a structure-photophysics correlation, we present a compelling case for the adoption of TTz-based materials in solid-state photonic and fluorescence-based optical devices.

2.
Mol Biol Cell ; 23(10): 1917-27, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22456506

RESUMO

The widely conserved Arp2/3 complex regulates branched actin dynamics that are necessary for a variety of cellular processes. In Caenorhabditis elegans, the actin cytoskeleton has been extensively characterized in its role in establishing PAR asymmetry; however, the contributions of actin to the maintenance of polarity before the onset of mitosis are less clear. Endocytic recycling has emerged as a key mechanism in the dynamic stabilization of cellular polarity, and the large GTPase dynamin participates in the stabilization of cortical polarity during maintenance phase via endocytosis in C. elegans. Here we show that disruption of Arp2/3 function affects the formation and localization of short cortical actin filaments and foci, endocytic regulators, and polarity proteins during maintenance phase. We detect actin associated with events similar to early endosomal fission, movement of endosomes into the cytoplasm, and endosomal movement from the cytoplasm to the plasma membrane, suggesting the involvement of actin in regulating processes at the early endosome. We also observe aberrant accumulations of PAR-6 cytoplasmic puncta near the centrosome along with early endosomes. We propose a model in which Arp2/3 affects the efficiency of rapid endocytic recycling of polarity cues that ultimately contributes to their stable maintenance.


Assuntos
Proteína 2 Relacionada a Actina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteína Quinase C/metabolismo , Citoesqueleto de Actina/metabolismo , Proteína 2 Relacionada a Actina/genética , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Polaridade Celular , Regulação para Baixo , Dinaminas/metabolismo , Endocitose , Endossomos , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Técnicas de Silenciamento de Genes , Microtúbulos/metabolismo , Mitose , Proteínas Serina-Treonina Quinases , Transporte Proteico , Interferência de RNA , Imagem com Lapso de Tempo , Proteínas rab5 de Ligação ao GTP/metabolismo
3.
Trends Cell Biol ; 20(8): 445-52, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20493706

RESUMO

The establishment and maintenance of polarized plasma membrane domains is essential for cellular function and proper development of organisms. The molecules and pathways involved in determining cell polarity are remarkably well conserved between animal species. Historically, exocytic mechanisms have received primary emphasis among trafficking routes responsible for cell polarization. Accumulating evidence now reveals that endocytosis plays an equally important role in the proper localization of key polarity proteins. Intriguingly, some polarity proteins can also regulate the endocytic machinery. Here, we review emerging evidence for the reciprocal regulation between polarity proteins and endocytic pathways, and discuss possible models for how these distinct processes could interact to create separate cellular domains.


Assuntos
Polaridade Celular , Endocitose , Animais , Membrana Celular/fisiologia , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Proteínas de Membrana/fisiologia , Oócitos/citologia , Oócitos/fisiologia
4.
Dev Cell ; 16(6): 889-900, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19531359

RESUMO

Cell polarity is crucial for the generation of cell diversity. Recent evidence suggests that the actin cytoskeleton plays a key role in establishment of embryonic polarity, yet the mechanisms that maintain polarity cues in particular membrane domains during development remain unclear. Dynamin, a large GTPase, functions in both endocytosis and actin dynamics. Here, the Caenorhabditis elegans dynamin ortholog, DYN-1, maintains anterior polarity cues. DYN-1-GFP foci are enriched in the anterior cortex in a manner dependent on the anterior polarity proteins, PAR-6 and PKC-3. Membrane internalization and actin comet formation are enriched in the anterior, and are dependent on DYN-1. PAR-6-labeled puncta are also internalized from cortical accumulations of DYN-1-GFP. Our results demonstrate a mechanism for the spatial and temporal regulation of endocytosis in the anterior of the embryo, contributing to the precise localization and maintenance of polarity factors within a dynamic plasma membrane.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Polaridade Celular , Dinaminas/metabolismo , Embrião não Mamífero/citologia , Actinas/metabolismo , Animais , Biomarcadores/metabolismo , Membrana Celular/metabolismo , Embrião não Mamífero/enzimologia , Endocitose , Deleção de Genes , Transporte Proteico , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...