Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(25): 17001-17007, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37288380

RESUMO

Here, we investigated the mechanism underlying the extraction of Se(iv) and Se(vi) from aqueous HCl solutions by N-2-ethylhexyl-bis(N-di-2-ethylhexyl-ethylamide)amine (EHBAA). In addition to examining extraction behavior, we also elucidated structural properties of the dominant Se species in solution. Two types of aqueous HCl solutions were prepared by dissolving a SeIV oxide or a SeVI salt. X-ray absorption near edge structure analyses revealed that Se(vi) was reduced to Se(iv) in 8 M HCl. Using 0.5 M EHBAA, ∼50% of Se(vi) was extracted from 0.5 M HCl. In contrast, Se(iv) was hardly extracted from 0.5 to 5 M HCl; however, at molar concentrations above 5 M, the extraction efficiency of Se(iv) increased drastically, reaching ∼85%. Slope analyses for the distribution ratios of Se(iv) in 8 M HCl and Se(vi) in 0.5 M HCl showed that apparent stoichiometries of Se(iv) or Se(vi) to EHBAA were 1 : 1 and 1 : 2, respectively. Extended X-ray absorption fine structure measurements revealed that the inner-sphere of the Se(iv) and Se(vi) complexes extracted with EHBAA was [SeOCl2] and [SeO4]2-, respectively. Together, these results indicate that Se(iv) is extracted from 8 M HCl with EHBAA via a solvation-type reaction, whereas Se(vi) is extracted from 0.5 M HCl via an anion-exchange-type reaction.

2.
Dalton Trans ; 50(33): 11390-11397, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34195711

RESUMO

Understanding the solution chemistry of Pt(iv) is crucial for the hydrometallurgy of precious metals. To gain such an understanding, the speciation and separation of Pt(iv) complexes in concentrated HNO3 solutions were investigated via Pt LIII edge X-ray absorption fine structure (XAFS) spectroscopy. The XAFS results for concentrated HNO3 solutions of Na2Pt(OH)6 revealed the dominant presence of Pt polynuclear complexes, wherein the formation of Pt(iv) polynuclear complexes depended on the metal concentration and the Na2Pt(OH)6 dissolution temperature. The dominant species present in a heated nitrate solution of 0.90 g-Pt L-1 and a non-heated nitrate solution of 3.2 g-Pt L-1 were dinuclear Pt(iv) complexes, whereas those in a heated solution of 3.0 g-Pt L-1 were predominantly larger polynuclear complexes, such as, tetra- and hexa-nuclear complexes. The presence of larger Pt(iv) complexes was confirmed via XAFS spectroscopy, wherein the adsorption of Pt(iv) ions from a 10 M HNO3 solution by a chelating resin functionalised with iminodiacetic acid and a strongly basic anion-exchange resin bearing trimethyl ammonium nitrate was examined. The adsorption of 50 mg L-1 of Pt(iv) by the two resins was tested using aqueous solutions diluted from heated HNO3 solutions with varying metal concentrations, and also from a non-heated solution. We found that Pt(iv) complexes from heating solutions containing high Pt(iv) concentrations displayed high adsorption percentages. In addition, the selective adsorption of Pt(iv) over Pd(ii), Ag(i), Cu(ii), Ni(ii), and Fe(iii) from a 10 M HNO3 solution was achieved using a strongly basic anion-exchange resin.

3.
Anal Sci ; 35(12): 1353-1360, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31447471

RESUMO

The effective recovery of Rh(III) from mixtures also containing Pd(II) and Pt(IV) is one of the most difficult tasks in platinum group metal refining. Adding 3,3'-diaminobenzidine (DAB) to 7 and 10 M HCl aqueous solutions containing Rh(III), Pd(II), and Pt(IV) chlorido species affords the effective separation of Rh(III) from Pd(II) and Pt(IV) through a process where Rh(III) becomes sequestered into solid phases composed of DAB. The stoichiometry and inner coordination sphere of the metal in Rh-DAB complexes were determined by estimating the Rh(III), H+, and Cl- concentrations in the solid phase and X-ray absorption fine structure measurements to clarify the mechanism of DAB selectivity for Rh(III). These results indicate that the Rh-DAB reaction in a concentrated HCl solution occurs in two steps: (1) the precipitation of DAB trihydrochloride salts, where DAB's amino groups are protonated and (2) anion exchange of the trihydrochloride salts for chloride ions with [RhCl6]3-, which is the predominant species in a concentrated HCl solution. By contrast, ion-pair complexes with [PdCl4]2- and [PtCl6]2- were not observed in DAB phases. The significantly lower affinity of the DAB trihydro cation for [PtCl6]2- and [PdCl4]2- than for [RhCl6]3- in 7 and 10 M HCl solutions accounts for the effective separation of Rh(III) from Pd(II) and Pt(IV).

4.
Inorg Chem ; 58(13): 8720-8734, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31247879

RESUMO

Current methods for the extraction of rhodium carry the highest carbon footprint and worst pollution metrics of all of the elements used in modern technological applications. Improving upon existing methods is made difficult by the limited understanding of the molecular-level chemistry occurring in extraction processes, particularly in the hydrometallurgical separation step. While many of the precious metals can be separated by solvent extraction, there currently exist no commercial extractants for Rh. This is due to its complicated mixed speciation upon leaching into hydrochloric acid, which gives rise to difficulties in designing effective reagents for solvent extraction. Herein we show that the diamidoamine reagent N- n-hexylbis( N-methyl- N- n-octylethylamide)amine transports Rh(III) from aqueous HCl into an organic phase as the monoaquated dianion [RhCl5(H2O)]2- through the formation of an outer-sphere assembly; this assembly has been characterized by experimentation (slope analysis, FT-IR and NMR spectroscopy, EXAFS, SANS, and ESI-MS) and computational modeling. The paper demonstrates the importance of applying a broad range of techniques to obtain a convincing mode of action for the complex processes involved in anion recognition in the solution phase. A consistent and comprehensive understanding of how the ligand operates to achieve Rh(III) selectivity over the competitor anion Cl- has emerged. This knowledge will guide the design of extractants and thus offers promise for improving the sustainability of metal extraction from both traditional mining sources and the recycling of secondary source materials.

5.
Environ Sci Technol ; 52(8): 4817-4826, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29589745

RESUMO

Understanding the form of Se(IV) co-precipitated with ferrihydrite and its subsequent behavior during phase transformation is critical to predicting its long-term fate in a range of natural and engineered settings. In this work, Se(IV)-ferrihydrite co-precipitates formed at different pH were characterized with chemical extraction, transmission electron microscopy (TEM), and X-ray absorption spectroscopy (XAS) to determine how Se(IV) is associated with ferrihydrite. Results show that despite efficient removal, the mode and stability of Se(IV) retention in the co-precipitates varied with pH. At pH 5, Se(IV) was removed dominantly as a ferric selenite-like phase intimately associated with ferrihydrite, while at pH 10, it was mostly present as a surface species on ferrihydrite. Similarly, the behavior of Se(IV) and the extent of its retention during phase transformation varied with pH. At pH 5, Se(IV) remained completely associated with the solid phase despite the phase change, whereas it was partially released back into solution at pH 10. Regardless of this difference in behavior, TEM and XAS results show that Se(IV) was retained within the crystalline post-aging products and possibly occluded in nanopore and defect structures. These results demonstrate a potential long-term immobilization pathway for Se(IV) even after phase transformation. This work presents one of the first direct insights on Se(IV) co-precipitation and its behavior in response to iron phase transformations.


Assuntos
Compostos Férricos , Ferro , Ácido Selenioso , Espectroscopia por Absorção de Raios X
6.
Anal Sci ; 33(11): 1305-1309, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29129872

RESUMO

Using N,N,N',N'-tetra-2-ethylhexyl-thiodiglycolamide (TEHTDGA) in n-dodecane as the extractant, we compared the percentages of Pd(II) extracted from HCl and HBr solutions, and analyzed the structures of the Pd(II)-extractant complexes. For comparison, similar experiments were performed with di-n-hexyl sulfide (DHS), a well-known sulfide-type extractant. TEHTDGA extracted Pd(II) from both HCl and HBr solutions much faster than DHS. The Pd(II)/(TEHTDGA or DHS) stoichiometry in the organic phase was 1:2. For TEHTDGA, the extractability of Pd(II) from HBr solution was inferior to that from HCl solution, whereas the opposite was true for DHS. However, FT-IR spectroscopy and EXAFS measurements indicated that the inner-sphere structure of Pd(II) in the TEHTDGA complex was almost the same as that in the DHS system: in both cases, two of the halide ions in the tetrachloro- or tetrabromopalladate(II) ion were replaced by the sulfur atoms of two extractant molecules.

7.
ACS Omega ; 2(2): 721-727, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31457466

RESUMO

An in situ extended X-ray absorption fine structure (in situ EXAFS) spectroscopic analysis at high temperature was conducted to investigate the mechanism of Cs removal from weathered biotite (WB) from Fukushima, induced by heating with a mixed salt of NaCl and CaCl2. This indicated that most Cs remained in WB during heating at 200-700 °C. In addition, the in situ EXAFS spectra gradually changed on heating with the mixed salt and a completely different spectrum was observed for the sample after cooling from 700 °C to room temperature (RT). Ex situ EXAFS measurements and X-ray fluorescence analyses were also conducted on samples after heat treatment and removal of the mixed salt to clarify the temperature dependence of the Cs removal ratio. On the basis of the results of radial structure function analysis obtained from in situ EXAFS, we concluded that almost all of the Cs was removed from WB by heating at 700 °C with the mixed salt, and that Cs formed Cs-Cl bonds after cooling to RT from 700 °C. In contrast, although more than half of the Cs present was removed from WB by heat treatment at 500 °C, most Cs was surrounded by silica tetrahedrons, maintained by Cs-O bonds. On the basis of these results, different Cs removal processes are suggested for the high-temperature (600-700 °C) and low-temperature (400-500 °C) regions.

8.
ACS Cent Sci ; 2(4): 253-65, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27163056

RESUMO

Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr(2+), Fe(3+), Nd(3+), and Am(3+), from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity.

9.
Sci Rep ; 6: 19937, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26818070

RESUMO

Cesium (Cs) removal from nuclear liquid wastewater has become an emerging issue for safeguarding public health after the accident at the Fukushima Daiichi Nuclear Power Plant. A novel macrocyclic ligand of o-benzo-p-xylyl-22-crown-6-ether (OBPX22C6) was developed and successfully immobilized onto mesoporous silica for the preparation of hybrid adsorbent. The benzene ring π electron is the part of crown ether of OBPX22C6 for easy orientation of the macrocyclic compound for making the π electron donation with Cs complexation. The potential and feasibility of the hybrid adsorbent as being Cs selective was evaluated in terms of sensitivity, selectivity and reusability. The results clarified that the Cs removal process was rapid and reached saturation within a short time. Considering the effect of competitive ions, sodium (Na) did not markedly affect the Cs adsorption whereas potassium (K) was slightly affected due to the similar ionic radii. However, the oxygen in long ethylene glycol chain in OBPX22C6 was expected to show strong coordination, including Cs-π interaction with Cs even in the presence of the high amount of K and Na. Due to its high selectivity and reusability, significant volume reduction is expected as this promising hybrid adsorbent is used for Cs removal in Fukushima wastewater.


Assuntos
Radioisótopos de Césio , Águas Residuárias , Poluentes Radioativos da Água , Poluição da Água , Adsorção , Radioisótopos de Césio/química , Acidente Nuclear de Fukushima , Concentração de Íons de Hidrogênio , Nitrogênio , Porosidade , Dióxido de Silício/química , Águas Residuárias/análise , Águas Residuárias/química
10.
J Hazard Mater ; 291: 111-9, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-25771216

RESUMO

This work reports the selenium (Se(IV)) detection and removal from water by ligand functionalized organic-inorganic based novel composite adsorbent. The composite adsorbent was prepared by direct immobilization of N,N'-di(3-carboxysalicylidene)-3,4-diamino-5-hydroxypyrazole onto the mesoporous silica monolith. The adsorbent exhibited distinct color change in the presence of various concentrations of Se(IV). This was characterized by UV-vis spectroscopy, and the color change was observed by naked-eye observation. The detection limit was determined to be 1.14 µg/L. The effect of solution pH, interferential metal ions, contact time, initial Se(IV) concentration, and adsorbent regeneration were evaluated. The maximum sorption capacity was determined based on the initial concentration. The data fitted well to the Langmuir isotherm model, and the maximum Se(IV) sorption capacity was 111.12 mg/g. The presence of diverse competing ions did not affect the Se(IV) sorption capacity, and the adsorbent had almost no sorption capacity for these coexisting ions, which suggests the high selectivity to Se(IV) ions. The adsorbed Se(IV) was eluted with suitable eluent (0.10 M NaOH) and simultaneously regenerated into the initial form for the next operation. The excellent reusability of the adsorbent was justified after eight consecutive sorption-elution-regeneration cycles. The proposed adsorbent is cost-effective and environmentally friendly and a potential candidate for treatment of water containing Se(IV).


Assuntos
Monitoramento Ambiental/métodos , Compostos de Selênio/análise , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Concentração de Íons de Hidrogênio , Ligantes , Compostos Orgânicos , Compostos de Selênio/isolamento & purificação , Dióxido de Silício , Purificação da Água
11.
J Hazard Mater ; 278: 227-35, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24981675

RESUMO

Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of dibenzo-24-crown-8 ether onto inorganic mesoporous silica. The effective parameters such as solution pH, contact time, initial Cs concentration and ionic strength of Na and K ion concentrations were evaluated and optimized systematically. This adsorbent was exhibited the high surface area-to-volume ratios and uniformly shaped pores in case cavities, and its active sites kept open functionality to taking up Cs. The obtained results revealed that adsorbent had higher selectivity toward Cs even in the presence of a high concentration of Na and K and this is probably due to the Cs-π interaction of the benzene ring. The proposed adsorbent was successfully applied for radioactive Cs removal to be used as the potential candidate in Fukushima nuclear wastewater treatment. The adsorbed Cs was eluted with suitable eluent and simultaneously regenerated into the initial form for the next removal operation after rinsing with water. The adsorbent retained functionality despite several cycles during sorption-elution-regeneration operations.


Assuntos
Radioisótopos de Césio/química , Éteres de Coroa/química , Poluentes Radioativos/química , Resíduos Radioativos , Dióxido de Silício/química , Eliminação de Resíduos Líquidos/métodos , Adsorção , Concentração de Íons de Hidrogênio
12.
Dalton Trans ; 43(4): 1630-5, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24217005

RESUMO

The nature of the inner coordination sphere of In(3+) present in both the organic and aqueous solutions during the solvent extraction of In(3+) from an aqueous HCl solution with tri-n-octyl amine (TOA) was investigated by In K-edge XAFS. This information was then used to clarify the details of the extraction properties of indium chloride anion complexes with TOA. In aqueous HCl solution (0.1-10 M), In(3+) exists as octahedral anion complexes, [InCln(H2O)6-n](3-n) (n ≥ 4); the [InCl6](3-) complex is dominant at 10 M HCl. The extraction of In(3+) from HCl solution with TOA was performed using two kinds of diluents: nitrobenzene (NB) or n-dodecane (DD), which contained 20 vol% of 2-ethylhexanol as an additive. The stoichiometric composition of the extracted complexes, which is estimated from the distribution ratios of In(3+), is affected by the diluents and the HCl concentration of the aqueous phase; the apparent values of TOA/In(3+) in the extracted complex are 3 for DD-1 M HCl (diluent-aqueous phase) and DD-5 M HCl, 2 for NB-1 M HCl and NB-5 M HCl, and 1 for NB-10 M HCl. The EXAFS analysis of these extracted complexes shows that the In(3+) has ∼4 Cl(-) at ∼2.336 Å and no H2O in the inner coordination sphere; additionally, the shape of the XANES suggests that their coordination geometry is tetrahedral. Therefore, the same tetrahedral [InCl4](-) complex is formed during the extraction in spite of the variation in the stoichiometric composition (TOA/In(3+) = 1-3) of the extracted complexes.

13.
J Hazard Mater ; 252-253: 313-20, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23548921

RESUMO

This study aims to develop a highly selective Lewis base adsorbent to investigate the selective sorption and recovery of Eu(III) and Sm(III) from wastewater. The oxygen and nitrogen donor atoms containing Lewis base N-methyl-N-phenyl-1,10-phenanthroline-2-carboxamide (MePhPTA) ligand was synthesized and subsequently an adsorbent was prepared by direct immobilization onto mesoporous silica. Determined maximum adsorption capacities were 125.63 and 124.38 mg/g for Eu(III) and Sm(III), respectively. Experiments with mixed-cations solutions showed that the sequence of preferential adsorption was Eu(III)>Sm(III). The lanthanide sorption by hybrid Lewis base adsorbent (HyLBA) was not adversely affected by the presence of sodium, potassium, calcium, magnesium, chloride, sulfate and nitrate ions due to strong affinity between hard Lewis acid lanthanide and hard Lewis base adsorbent. The crystallography for the Sm-MePhPTA complex suggested that MePhPTA was strongly coordinated to Sm(III) with oxygen and nitrogen by forming a stable complex with two 5-membered rings. The data clarified that bond lengths between Sm(III) and amide oxygen (2.475Å) were shorter than SmN (2.662Å) in phenanthroline moiety indicating strong oxygen driven HyLBA. The results suggested that HyLBA has a good prospect of promising applications for separation/sorption of lanthanide ions from effluents.


Assuntos
Európio/química , Bases de Lewis/química , Fenantrolinas/química , Samário/química , Poluentes Químicos da Água/química , Adsorção , Cristalografia por Raios X , Ligantes , Dióxido de Silício/química , Eliminação de Resíduos Líquidos/métodos
14.
Water Res ; 46(17): 5541-5550, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22901303

RESUMO

This study is an efficient arsenic(V) removal from contaminated waters used as drinking water in adsorption process by zirconium(IV) loaded ligand exchange fibrous adsorbent. The bifunctional fibers contained both phosphonate and sulfonate groups. The bifunctional fiber was synthesised by graft polymerization of chloromethylstyrene onto polyethylene coated polypropylene fiber by means of electron irradiation graft polymerization technique and then desired phosphonate and sulfonate groups were introduced by Arbusov reaction followed by phosphorylation and sulfonation. Arsenic(V) adsorption was clarified in column methods with continuous flow operation in order to assess the arsenic(V) removal capacity in various conditions. The adsorption efficiency was evaluated in several parameters such as competing ions (chloride and sulfate), feed solution acidity, feed flow rate, feed concentration and kinetic performances at high feed flow rate of trace concentration arsenic(V). Arsenic(V) adsorption was not greatly changed when feed solutions pH at 3.0-7.0 and high breakthrough capacity was observed in strong acidic area below pH 2.2. Increasing the flow rate brings a decrease both breakthrough capacity and total adsorption. Trace level of arsenic(V) (0.015 mM) in presence of competing ions was also removed at high flow rate (750 h(-1)) with high removal efficiency. Therefore, the adsorbent is highly selective to arsenic(V) even in the presence of high concentration competing ions. The adsorbent is reversible and reusable in many cycles without any deterioration in its original performances. Therefore, Zr(IV) loaded ligand exchange adsorbent is to be an effective means to treat arsenic(V) contaminated water efficiently and able to safeguard the human health.


Assuntos
Arsênio/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Arsênio/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação
15.
J Phys Chem A ; 114(13): 4664-71, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20225902

RESUMO

The local structure around the La(3+) ions in molten LaCl(3) and its mixtures with alkali and alkaline earth chlorides has been investigated by using extended X-ray absorption fine structure (XAFS) and molecular dynamics (MD) techniques. Such mixtures, which are of current technological interest, are known to be thermodynamically nonideal, and there has been a good deal of work to understand the structural effects factors that contribute to the nonideality. New experimental methods allow observations at the La K-absorption edge at the high temperatures of interest, and the ability of the technique to obtain reliable information even at very low La(3+) concentrations in multicomponent mixtures is demonstrated. Both the mean La(3+)-Cl(-) interionic separation and the mean La(3+) coordination number are found to decrease as the concentration of La(3+) in the mixture decreases. The rate of decrease depends on the identity of the alkali and alkaline earth cations present in the mixtures in a way that parallels the degree of nonideality of the different systems; it is greatest for those alkali cations that coordinate Cl(-) weakly. In dilute mixtures with such cations La(3+) is able to adopt a very stable octahedral coordination geometry but this is inhibited by the presence of more strongly coordinating cations like Li(+) and Mg(2+).

16.
Anal Chem ; 79(21): 8016-23, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17918914

RESUMO

Analytical technique using organic resins has already been well-developed, and its applications are employed in various fields; nevertheless, the chemical phenomena occurring inside the resin remain unclear for the most part. In the present study, we apply EXAFS spectroscopy to elucidate the adsorption and separation phenomena of metal ions by organic resin. That is, the chemical species of trivalent lanthanides (Ln(III)) adsorbed in a tertiary pyridine resin from hydrochloric acid and nitric acid solutions have been determined by EXAFS. The results in HCl solutions suggest that Ln(III) ions are partly dehydrated in the resin phase, enabling the pyridine groups of the resin and chloride ions to coordinate to the Ln(III) ions in their primary coordination sphere. On the other hand, Ln(III) ions are tightly coordinated by several nitrate ions in HNO3 solutions and they keep forming the nitrate complex even in the resin phase. The lighter Ln of Nd tends to form an anionic nitrate complex, [Nd(NO3)4.nH2O]-, in the resin phase, while the middle Ln of Sm exists as a cationic nitrate complex, [Sm(NO3)2.nH2O]+, for the most part. On the basis of these EXAFS results, the adsorption and separation mechanisms of the pyridine resin in HCl solutions are interpreted as the direct coordination of pyridine groups to metal ions, while the mechanisms in HNO3 solutions are mainly dominated by the anion-exchange reaction between the protonated pyridine groups and the anionic nitrate complexes of Ln(III). The obtained results demonstrate that the hydration of metal ions weakens, and instead, other complexations are enhanced in the resin phase.


Assuntos
Resinas de Troca Iônica/química , Elementos da Série dos Lantanídeos/análise , Piridinas/química , Adsorção , Ácido Clorídrico/química , Íons/análise , Estrutura Molecular , Ácido Nítrico/química , Sensibilidade e Especificidade , Soluções/química , Análise Espectral/métodos , Propriedades de Superfície , Raios X
17.
Igaku Butsuri ; 22(1): 13-20, 2002.
Artigo em Japonês | MEDLINE | ID: mdl-12766292

RESUMO

The X-ray refraction-contrast imaging using synchrotron radiation with some X-ray energies is successfully performed at B120B2 of SPring-8. The refraction-contrast images of bone samples such as human dried proximal phalanx, wrist, upper cervical vertebrae and sella turcica, and as mouse proximal femur, using the synchrotron X-ray are always better in image contrast and resolution than those of the absorption-contrast images using the synchrotron X-ray and/or the conventional X-ray tube. There is much likeness in the image contrast and resolution of trabeculae bone in the human dried proximal phalanx between X-ray energy of 30 keV at sample-to-film distance of 1m and those of 40, 50 keV at those of 4,5m, respectively. High-energy refraction-constrast imaging with suitable sample-to-film distance could reduce the exposure dose in human imaging. In the refraction-contrast imaging of human wrist, upper cervical vertebrae, sella turcica and mouse proximal femur using the synchrotoron X-ray, we can obtain better image contrast and resolution to correctly extract morphological information for diagnosis corresponding to each of the clinical field than those of the absorption-contrast images.


Assuntos
Osso e Ossos/diagnóstico por imagem , Intensificação de Imagem Radiográfica/métodos , Síncrotrons , Animais , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...