Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
HGG Adv ; 5(3): 100299, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659227

RESUMO

Canonical splice site variants (CSSVs) are often presumed to cause loss-of-function (LoF) and are assigned very strong evidence of pathogenicity (according to American College of Medical Genetics/Association for Molecular Pathology criterion PVS1). The exact nature and predictability of splicing effects of unselected rare CSSVs in blood-expressed genes are poorly understood. We identified 168 rare CSSVs in blood-expressed genes in 112 individuals using genome sequencing, and studied their impact on splicing using RNA sequencing (RNA-seq). There was no evidence of a frameshift, nor of reduced expression consistent with nonsense-mediated decay, for 25.6% of CSSVs: 17.9% had wildtype splicing only and normal junction depths, 3.6% resulted in cryptic splice site usage and in-frame insertions or deletions, 3.6% resulted in full exon skipping (in frame), and 0.6% resulted in full intron inclusion (in frame). Blind to these RNA-seq data, we attempted to predict the precise impact of CSSVs by applying in silico tools and the ClinGen Sequence Variant Interpretation Working Group 2018 guidelines for applying PVS1 criterion. The predicted impact on splicing using (1) SpliceAI, (2) MaxEntScan, and (3) AutoPVS1, an automatic classification tool for PVS1 interpretation of null variants that utilizes Ensembl Variant Effect Predictor and MaxEntScan, was concordant with RNA-seq analyses for 65%, 63%, and 61% of CSSVs, respectively. In summary, approximately one in four rare CSSVs did not show evidence for LoF based on analysis of RNA-seq data. Predictions from in silico methods were often discordant with findings from RNA-seq. More caution may be warranted in applying PVS1-level evidence to CSSVs in the absence of functional data.

2.
Cancer Discov ; 14(4): 663-668, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571421

RESUMO

SUMMARY: We are building the world's first Virtual Child-a computer model of normal and cancerous human development at the level of each individual cell. The Virtual Child will "develop cancer" that we will subject to unlimited virtual clinical trials that pinpoint, predict, and prioritize potential new treatments, bringing forward the day when no child dies of cancer, giving each one the opportunity to lead a full and healthy life.


Assuntos
Neoplasias , Humanos , Neoplasias/genética
3.
Oncogene ; 43(16): 1223-1230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413794

RESUMO

CIC::DUX4 sarcoma (CDS) is a rare but highly aggressive undifferentiated small round cell sarcoma driven by a fusion between the tumor suppressor Capicua (CIC) and DUX4. Currently, there are no effective treatments and efforts to identify and translate better therapies are limited by the scarcity of patient tumor samples and cell lines. To address this limitation, we generated three genetically engineered mouse models of CDS (Ch7CDS, Ai9CDS, and TOPCDS). Remarkably, chimeric mice from all three conditional models developed spontaneous soft tissue tumors and disseminated disease in the absence of Cre-recombinase. The penetrance of spontaneous (Cre-independent) tumor formation was complete irrespective of bi-allelic Cic function and the distance between adjacent loxP sites. Characterization of soft tissue and presumed metastatic tumors showed that they consistently expressed the CIC::DUX4 fusion protein and many downstream markers of the disease credentialing the models as CDS. In addition, tumor-derived cell lines were generated and ChIP-seq was preformed to map fusion-gene specific binding using an N-terminal HA epitope tag. These datasets, along with paired H3K27ac ChIP-sequencing maps, validate CIC::DUX4 as a neomorphic transcriptional activator. Moreover, they are consistent with a model where ETS family transcription factors are cooperative and redundant drivers of the core regulatory circuitry in CDS.


Assuntos
Sarcoma de Células Pequenas , Sarcoma , Neoplasias de Tecidos Moles , Animais , Camundongos , Alelos , Biomarcadores Tumorais , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas c-ets , Sarcoma/genética , Sarcoma/metabolismo , Sarcoma de Células Pequenas/química , Sarcoma de Células Pequenas/genética , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Humanos
4.
J Natl Cancer Inst ; 116(1): 138-148, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-37688570

RESUMO

BACKGROUND: High-risk neuroblastoma is a complex genetic disease that is lethal in more than 50% of patients despite intense multimodal therapy. Through genome-wide association studies (GWAS) and next-generation sequencing, we have identified common single nucleotide polymorphisms and rare, pathogenic or likely pathogenic germline loss-of-function variants in BARD1 enriched in neuroblastoma patients. The functional implications of these findings remain poorly understood. METHODS: We correlated BARD1 genotype with expression in normal tissues and neuroblastomas, along with the burden of DNA damage in tumors. To validate the functional consequences of germline pathogenic or likely pathogenic BARD1 variants, we used CRISPR-Cas9 to generate isogenic neuroblastoma (IMR-5) and control (RPE1) cellular models harboring heterozygous BARD1 loss-of-function variants (R112*, R150*, E287fs, and Q564*) and quantified genomic instability in these cells via next-generation sequencing and with functional assays measuring the efficiency of DNA repair. RESULTS: Both common and rare neuroblastoma-associated BARD1 germline variants were associated with lower levels of BARD1 mRNA and an increased burden of DNA damage. Using isogenic heterozygous BARD1 loss-of-function variant cellular models, we functionally validated this association with inefficient DNA repair. BARD1 loss-of-function variant isogenic cells exhibited reduced efficiency in repairing Cas9-induced DNA damage, ineffective RAD51 focus formation at DNA double-strand break sites, and enhanced sensitivity to cisplatin and poly (ADP-ribose) polymerase (PARP) inhibition both in vitro and in vivo. CONCLUSIONS: Taken together, we demonstrate that germline BARD1 variants disrupt DNA repair fidelity. This is a fundamental molecular mechanism contributing to neuroblastoma initiation that may have important therapeutic implications.


Assuntos
Neuroblastoma , Proteínas Supressoras de Tumor , Humanos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Estudo de Associação Genômica Ampla , Haploinsuficiência , Ubiquitina-Proteína Ligases/genética , Proteína BRCA1/genética , Reparo do DNA/genética , Neuroblastoma/patologia
5.
Cancer Res Commun ; 3(12): 2608-2622, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38032104

RESUMO

Survival rates among patients with high-risk neuroblastoma remain low and novel therapies for recurrent neuroblastomas are required. ALK is commonly mutated in primary and relapsed neuroblastoma tumors and ALK tyrosine kinase inhibitors (TKI) are promising treatments for ALK-driven neuroblastoma; however, innate or adaptive resistance to single-agent ALK-TKIs remain a clinical challenge. Recently, SHP2 inhibitors have been shown to overcome ALK-TKI resistance in lung tumors harboring ALK rearrangements. Here, we have assessed the efficacy of the SHP2 inhibitor TNO155 alone and in combination with the ALK-TKIs crizotinib, ceritinib, or lorlatinib for the treatment of ALK-driven neuroblastoma using in vitro and in vivo models. In comparison to wild-type, ALK-mutant neuroblastoma cell lines were more sensitive to SHP2 inhibition with TNO155. Moreover, treatment with TNO155 and ALK-TKIs synergistically reduced cell growth and promoted inactivation of ALK and MAPK signaling in ALK-mutant neuroblastoma cells. ALK-mutant cells engrafted into larval zebrafish and treated with single agents or dual SHP2/ALK inhibitors showed reduced growth and invasion. In murine ALK-mutant xenografts, tumor growth was likewise reduced or delayed, and survival was prolonged upon combinatorial treatment of TNO155 and lorlatinib. Finally, we show that lorlatinib-resistant ALK-F1174L neuroblastoma cells harbor additional RAS-MAPK pathway alterations and can be resensitized to lorlatinib when combined with TNO155 in vitro and in vivo. Our results report the first evaluation of TNO155 in neuroblastoma and suggest that combinatorial inhibition of ALK and SHP2 could be a novel approach to treating ALK-driven neuroblastoma, potentially including the increasingly common tumors that have developed resistance to ALK-TKIs. SIGNIFICANCE: These findings highlight the translatability between zebrafish and murine models, provide evidence of aberrant RAS-MAPK signaling as an adaptive mechanism of resistance to lorlatinib, and demonstrate the clinical potential for SHP2/ALK inhibitor combinations for the treatment of ALK-mutant neuroblastoma, including those with acquired tolerance or potentially resistance to ALK-TKIs.


Assuntos
Neuroblastoma , Peixe-Zebra , Humanos , Camundongos , Animais , Peixe-Zebra/metabolismo , Quinase do Linfoma Anaplásico , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Lactamas Macrocíclicas/farmacologia , Neuroblastoma/tratamento farmacológico
6.
Artigo em Inglês | MEDLINE | ID: mdl-37932047

RESUMO

T-lymphoblastic lymphoma (T-LLy) is the most common lymphoblastic lymphoma in children and often presents with a mediastinal mass. Lymphomatous suprarenal masses are possible but rare. Here, we discuss the case of a previously healthy 3-yr-old male who presented with mediastinal T-LLy with bilateral suprarenal masses. Following initial treatment, surgical biopsy of persisting adrenal masses revealed bilateral neuroblastoma (NBL). A clinical genetics panel for germline cancer predisposition did not identify any pathogenic variants. Combination large panel (864 genes) profiling analysis in the context of a precision oncology study revealed two novel likely pathogenic heterozygous variants: SMARCA4 c.1420-1G > T p.? and EZH2 c.1943G > C p.(Ile631Phefs*44). Somatic analysis revealed potential second hits/somatic variants in EZH2 (in the T-LLy) and a segmental loss in Chromosome 19p encompassing SMARCA4 (in the NBL). Synchronous cancers, especially at a young age, warrant genetic evaluation for cancer predisposition; enrollment in a precision oncology program assessing germline and tumor DNA can fulfill that purpose, particularly when standard first-line genetic testing is negative and in the setting of tumors that are not classic for common cancer predisposition syndromes.


Assuntos
Neuroblastoma , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Criança , Humanos , Masculino , Medicina de Precisão , Testes Genéticos , Neuroblastoma/genética , Predisposição Genética para Doença , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética
7.
Cancer Res ; 83(23): 3846-3860, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37819236

RESUMO

NUT carcinoma (NC) is an aggressive squamous carcinoma defined by the BRD4-NUT fusion oncoprotein. Routinely effective systemic treatments are unavailable for most NC patients. The lack of an adequate animal model precludes identifying and leveraging cell-extrinsic factors therapeutically in NC. Here, we created a genetically engineered mouse model (GEMM) of NC that forms a Brd4::NUTM1 fusion gene upon tamoxifen induction of Sox2-driven Cre. The model displayed complete disease penetrance, with tumors arising from the squamous epithelium weeks after induction and all mice succumbing to the disease shortly thereafter. Closely resembling human NC (hNC), GEMM tumors (mNC) were poorly differentiated squamous carcinomas with high expression of MYC that metastasized to solid organs and regional lymph nodes. Two GEMM-derived cell lines were developed whose transcriptomic and epigenetic landscapes harbored key features of primary GEMM tumors. Importantly, GEMM tumor and cell line transcriptomes co-classified with those of human NC. BRD4-NUT also blocked differentiation and maintained the growth of mNC as in hNC. Mechanistically, GEMM primary tumors and cell lines formed large histone H3K27ac-enriched domains, termed megadomains, that were invariably associated with the expression of key NC-defining proto-oncogenes, Myc and Trp63. Small-molecule BET bromodomain inhibition (BETi) of mNC induced differentiation and growth arrest and prolonged survival of NC GEMMs, as it does in hNC models. Overall, tumor formation in the NC GEMM is definitive evidence that BRD4-NUT alone can potently drive the malignant transformation of squamous progenitor cells into NC. SIGNIFICANCE: The development of an immunocompetent model of NUT carcinoma that closely mimics the human disease provides a valuable global resource for mechanistic and preclinical studies to improve treatment of this incurable disease.


Assuntos
Carcinoma de Células Escamosas , Fatores de Transcrição , Animais , Humanos , Camundongos , Carcinoma de Células Escamosas/patologia , Proteínas de Ciclo Celular/genética , Transformação Celular Neoplásica/genética , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Curr Oncol ; 30(7): 5946-5952, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37503586

RESUMO

ETV6-ABL1 gene fusion is a rare genetic rearrangement in a variety of malignancies, including myeloproliferative neoplasms (MPN), acute lymphoblastic leukemia (ALL), and acute myeloid leukemia (AML). Here, we report the case of a 16-year-old male diagnosed with a MPN, 7 months post-completion of treatment for Burkitt leukaemia. RNA sequencing analysis confirmed the presence of an ETV6-ABL1 fusion transcript, with an intact, in-frame ABL tyrosine-kinase domain. Of note, secondary ETV6-ABL1-rearranged neoplastic diseases have not been reported to date. The patient was started on a tyrosine kinase inhibitor (TKI; imatinib) and, subsequently, underwent a 10/10 matched unrelated haematopoietic stem cell transplant. He is disease-free five years post-transplant. Definitive evidence of the prognostic influence of the ETV6-ABL1 fusion in haematological neoplasms is lacking; however, overall data suggest that it is a poor prognostic factor, particularly in patients with ALL and AML. The presence of this ETV6-ABL1 fusion should be more routinely investigated, especially in patients with a CML-like picture. More routine use of whole-genome and RNA sequencing analyses in clinical diagnostic care, in conjunction with conventional cytogenetics, will facilitate these investigations.


Assuntos
Linfoma de Burkitt , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Masculino , Humanos , Adolescente , Proteínas Tirosina Quinases/genética , Hibridização in Situ Fluorescente , Mesilato de Imatinib/uso terapêutico , Leucemia Mieloide Aguda/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
9.
Cancer Res Commun ; 3(5): 738-754, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37377903

RESUMO

Li-Fraumeni syndrome (LFS) is an autosomal dominant cancer-predisposition disorder. Approximately 70% of individuals who fit the clinical definition of LFS harbor a pathogenic germline variant in the TP53 tumor suppressor gene. However, the remaining 30% of patients lack a TP53 variant and even among variant TP53 carriers, approximately 20% remain cancer-free. Understanding the variable cancer penetrance and phenotypic variability in LFS is critical to developing rational approaches to accurate, early tumor detection and risk-reduction strategies. We leveraged family-based whole-genome sequencing and DNA methylation to evaluate the germline genomes of a large, multi-institutional cohort of patients with LFS (n = 396) with variant (n = 374) or wildtype TP53 (n = 22). We identified alternative cancer-associated genetic aberrations in 8/14 wildtype TP53 carriers who developed cancer. Among variant TP53 carriers, 19/49 who developed cancer harbored a pathogenic variant in another cancer gene. Modifier variants in the WNT signaling pathway were associated with decreased cancer incidence. Furthermore, we leveraged the noncoding genome and methylome to identify inherited epimutations in genes including ASXL1, ETV6, and LEF1 that confer increased cancer risk. Using these epimutations, we built a machine learning model that can predict cancer risk in patients with LFS with an area under the receiver operator characteristic curve (AUROC) of 0.725 (0.633-0.810). Significance: Our study clarifies the genomic basis for the phenotypic variability in LFS and highlights the immense benefits of expanding genetic and epigenetic testing of patients with LFS beyond TP53. More broadly, it necessitates the dissociation of hereditary cancer syndromes as single gene disorders and emphasizes the importance of understanding these diseases in a holistic manner as opposed to through the lens of a single gene.


Assuntos
Síndrome de Li-Fraumeni , Humanos , Síndrome de Li-Fraumeni/genética , Proteína Supressora de Tumor p53/genética , Predisposição Genética para Doença/genética , Genes p53 , Mutação em Linhagem Germinativa/genética
10.
Am J Hum Genet ; 110(5): 895-900, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36990084

RESUMO

Genome sequencing (GS) is a powerful test for the diagnosis of rare genetic disorders. Although GS can enumerate most non-coding variation, determining which non-coding variants are disease-causing is challenging. RNA sequencing (RNA-seq) has emerged as an important tool to help address this issue, but its diagnostic utility remains understudied, and the added value of a trio design is unknown. We performed GS plus RNA-seq from blood using an automated clinical-grade high-throughput platform on 97 individuals from 39 families where the proband was a child with unexplained medical complexity. RNA-seq was an effective adjunct test when paired with GS. It enabled clarification of putative splice variants in three families, but it did not reveal variants not already identified by GS analysis. Trio RNA-seq decreased the number of candidates requiring manual review when filtering for de novo dominant disease-causing variants, allowing for the exclusion of 16% of gene-expression outliers and 27% of allele-specific-expression outliers. However, clear diagnostic benefit from the trio design was not observed. Blood-based RNA-seq can facilitate genome analysis in children with suspected undiagnosed genetic disease. In contrast to DNA sequencing, the clinical advantages of a trio RNA-seq design may be more limited.


Assuntos
Família , Doenças Raras , Humanos , Criança , Sequência de Bases , Análise de Sequência de DNA , Sequenciamento do Exoma , Doenças Raras/genética , Análise de Sequência de RNA
11.
Nat Med ; 29(3): 656-666, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36932241

RESUMO

The causes of pediatric cancers' distinctiveness compared to adult-onset tumors of the same type are not completely clear and not fully explained by their genomes. In this study, we used an optimized multilevel RNA clustering approach to derive molecular definitions for most childhood cancers. Applying this method to 13,313 transcriptomes, we constructed a pediatric cancer atlas to explore age-associated changes. Tumor entities were sometimes unexpectedly grouped due to common lineages, drivers or stemness profiles. Some established entities were divided into subgroups that predicted outcome better than current diagnostic approaches. These definitions account for inter-tumoral and intra-tumoral heterogeneity and have the potential of enabling reproducible, quantifiable diagnostics. As a whole, childhood tumors had more transcriptional diversity than adult tumors, maintaining greater expression flexibility. To apply these insights, we designed an ensemble convolutional neural network classifier. We show that this tool was able to match or clarify the diagnosis for 85% of childhood tumors in a prospective cohort. If further validated, this framework could be extended to derive molecular definitions for all cancer types.


Assuntos
Neoplasias , Adulto , Humanos , Criança , Neoplasias/diagnóstico , Neoplasias/genética , Transcriptoma/genética , Estudos Prospectivos , Perfilação da Expressão Gênica/métodos , Redes Neurais de Computação
12.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778420

RESUMO

Importance: High-risk neuroblastoma is a complex genetic disease that is lethal in 50% of patients despite intense multimodal therapy. Our genome-wide association study (GWAS) identified single-nucleotide polymorphisms (SNPs) within the BARD1 gene showing the most significant enrichment in neuroblastoma patients, and also discovered pathogenic (P) or likely pathogenic (LP) rare germline loss-of-function variants in this gene. The functional implications of these findings remain poorly understood. Objective: To define the functional relevance of BARD1 germline variation in children with neuroblastoma. Design: We correlated BARD1 genotype with BARD1 expression in normal and tumor cells and the cellular burden of DNA damage in tumors. To validate the functional consequences of rare germline P-LP BARD1 variants, we generated isogenic cellular models harboring heterozygous BARD1 loss-of-function (LOF) variants and conducted multiple complementary assays to measure the efficiency of DNA repair. Setting: (N/A). Participants: (N/A). Interventions/Exposures: (N/A). Main Outcomes and Measures: BARD1 expression, efficiency of DNA repair, and genome-wide burden of DNA damage in neuroblastoma tumors and cellular models harboring disease-associated BARD1 germline variants. Results: Both common and rare neuroblastoma associated BARD1 germline variants were significantly associated with lower levels of BARD1 mRNA and an increased burden of DNA damage. Using neuroblastoma cellular models engineered to harbor disease-associated heterozygous BARD1 LOF variants, we functionally validated this association with inefficient DNA repair. These BARD1 LOF variant isogenic models exhibited reduced efficiency in repairing Cas9-induced DNA damage, ineffective RAD51 focus formation at DNA doublestrand break sites, and enhanced sensitivity to cisplatin and poly-ADP ribose polymerase (PARP) inhibition. Conclusions and Relevance: Considering that at least 1 in 10 children diagnosed with cancer carry a predicted pathogenic mutation in a cancer predisposition gene, it is critically important to understand their functional relevance. Here, we demonstrate that germline BARD1 variants disrupt DNA repair fidelity. This is a fundamental molecular mechanism contributing to neuroblastoma initiation that may have important therapeutic implications, and these findings may also extend to other cancers harboring germline variants in genes essential for DNA damage repair. Key Points: Question: How do neuroblastoma patient BRCA1-associated RING domain 1 ( BARD1 ) germline variants impact DNA repair? Findings: Neuroblastoma-associated germline BARD1 variants disrupt DNA repair fidelity. Common risk variants correlate with decreased BARD1 expression and increased DNA double-strand breaks in neuroblastoma tumors and rare heterozygous loss-of-function variants induce BARD1 haploinsufficiency, resulting in defective DNA repair and genomic instability in neuroblastoma cellular models. Meaning: Germline variation in BARD1 contributes to neuroblastoma pathogenesis via dysregulation of critical cellular DNA repair functions, with implications for neuroblastoma treatment, risk stratification, and cancer predisposition.

13.
J Pediatr Adolesc Gynecol ; 36(4): 424-427, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36669618

RESUMO

BACKGROUND: Wilms' tumor is the second most common pediatric abdominal cancer; however, it rarely involves the female reproductive tract. There are few cases reported in the literature describing uterine, ovarian, cervical, and vaginal involvement. CASE: We report the case of a 7-year-old girl presenting with a large renal mass with retroperitoneal nodal and lung metastases; she was diagnosed with stage 4 favorable histology Wilms' tumor. She was treated with surgery, chemotherapy, and radiation. She presented with vaginal bleeding 10 months after completing treatment; biopsy of a vaginal mass confirmed recurrence, and this was sent for molecular profiling, which did not identify an inherited cancer predisposition or targetable mutation. She was again treated with chemotherapy; examination redemonstrated a small vaginal mass, but re-biopsy of the lesion was negative for malignancy. Due to high risk of local relapse, ongoing chemotherapy and pelvic radiation ensued. End-of-treatment imaging and vaginoscopy showed no residual disease. SUMMARY AND CONCLUSION: Vaginal metastases of Wilms' tumor are very rare; this is the second reported case in the literature. Pediatric clinicians should have a strong suspicion for vaginal metastases in cancer patients presenting with vaginal bleeding, especially when their pubertal development does not suggest that bleeding would be secondary to menarche. Long-term gynecologic care for these patients is paramount to reduce morbidity from chemotherapy and pelvic radiation. Fertility preservation counselling should be made early, through referral to a specialist.


Assuntos
Neoplasias Renais , Neoplasias Vaginais , Tumor de Wilms , Humanos , Criança , Feminino , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Recidiva Local de Neoplasia , Tumor de Wilms/tratamento farmacológico , Tumor de Wilms/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Vaginais/tratamento farmacológico
14.
Nat Commun ; 14(1): 77, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604421

RESUMO

Li-Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome associated with germline TP53 pathogenic variants. Here, we perform whole-genome sequence (WGS) analysis of tumors from 22 patients with TP53 germline pathogenic variants. We observe somatic mutations affecting Wnt, PI3K/AKT signaling, epigenetic modifiers and homologous recombination genes as well as mutational signatures associated with prior chemotherapy. We identify near-ubiquitous early loss of heterozygosity of TP53, with gain of the mutant allele. This occurs earlier in these tumors compared to tumors with somatic TP53 mutations, suggesting the timing of this mark may distinguish germline from somatic TP53 mutations. Phylogenetic trees of tumor evolution, reconstructed from bulk and multi-region WGS, reveal that LFS tumors exhibit comparatively limited heterogeneity. Overall, our study delineates early copy number gains of mutant TP53 as a characteristic mutational process in LFS tumorigenesis, likely arising years prior to tumor diagnosis.


Assuntos
Síndrome de Li-Fraumeni , Síndromes Neoplásicas Hereditárias , Humanos , Proteína Supressora de Tumor p53/genética , Predisposição Genética para Doença , Variações do Número de Cópias de DNA/genética , Fosfatidilinositol 3-Quinases/genética , Filogenia , Síndrome de Li-Fraumeni/diagnóstico , Síndrome de Li-Fraumeni/genética , Mutação em Linhagem Germinativa/genética , Mutação
15.
J Clin Oncol ; 41(4): 766-777, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240479

RESUMO

PURPOSE: Diagnosis of Mismatch Repair Deficiency (MMRD) is crucial for tumor management and early detection in patients with the cancer predisposition syndrome constitutional mismatch repair deficiency (CMMRD). Current diagnostic tools are cumbersome and inconsistent both in childhood cancers and in determining germline MMRD. PATIENTS AND METHODS: We developed and analyzed a functional Low-pass Genomic Instability Characterization (LOGIC) assay to detect MMRD. The diagnostic performance of LOGIC was compared with that of current established assays including tumor mutational burden, immunohistochemistry, and the microsatellite instability panel. LOGIC was then applied to various normal tissues of patients with CMMRD with comprehensive clinical data including age of cancer presentation. RESULTS: Overall, LOGIC was 100% sensitive and specific in detecting MMRD in childhood cancers (N = 376). It was more sensitive than the microsatellite instability panel (14%, P = 4.3 × 10-12), immunohistochemistry (86%, P = 4.6 × 10-3), or tumor mutational burden (80%, P = 9.1 × 10-4). LOGIC was able to distinguish CMMRD from other cancer predisposition syndromes using blood and saliva DNA (P < .0001, n = 277). In normal cells, MMRDness scores differed between tissues (GI > blood > brain), increased over time in the same individual, and revealed genotype-phenotype associations within the mismatch repair genes. Importantly, increased MMRDness score was associated with younger age of first cancer presentation in individuals with CMMRD (P = 2.2 × 10-5). CONCLUSION: LOGIC was a robust tool for the diagnosis of MMRD in multiple cancer types and in normal tissues. LOGIC may inform therapeutic cancer decisions, provide rapid diagnosis of germline MMRD, and support tailored surveillance for individuals with CMMRD.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Humanos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Reparo de Erro de Pareamento de DNA/genética , Genômica , Células Germinativas/patologia , Instabilidade de Microssatélites , Repetições de Microssatélites , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/genética
16.
Sci Adv ; 8(47): eabn0238, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36417526

RESUMO

Cancers are often defined by the dysregulation of specific transcriptional programs; however, the importance of global transcriptional changes is less understood. Hypertranscription is the genome-wide increase in RNA output. Hypertranscription's prevalence, underlying drivers, and prognostic significance are undefined in primary human cancer. This is due, in part, to limitations of expression profiling methods, which assume equal RNA output between samples. Here, we developed a computational method to directly measure hypertranscription in 7494 human tumors, spanning 31 cancer types. Hypertranscription is ubiquitous across cancer, especially in aggressive disease. It defines patient subgroups with worse survival, even within well-established subtypes. Our data suggest that loss of transcriptional suppression underpins the hypertranscriptional phenotype. Single-cell analysis reveals hypertranscriptional clones, which dominate transcript production regardless of their size. Last, patients with hypertranscribed mutations have improved response to immune checkpoint therapy. Our results provide fundamental insights into gene dysregulation across human cancers and may prove useful in identifying patients who would benefit from novel therapies.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Prognóstico , RNA
17.
BMC Med Genomics ; 15(1): 190, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071521

RESUMO

BACKGROUND: Tumor mutation burden (TMB) is a key characteristic used in a tumor-type agnostic context to inform the use of immune checkpoint inhibitors (ICI). Accurate and consistent measurement of TMB is crucial as it can significantly impact patient selection for therapy and clinical trials, with a threshold of 10 mutations/Mb commonly used as an inclusion criterion. Studies have shown that the most significant contributor to variability in mutation counts in whole genome sequence (WGS) data is differences in analysis methods, even more than differences in extraction or library construction methods. Therefore, tools for improving consistency in whole genome TMB estimation are of clinical importance. METHODS: We developed a distributable TMB analysis suite, TMBur, to address the need for genomic TMB estimate consistency in projects that span jurisdictions. TMBur is implemented in Nextflow and performs all analysis steps to generate TMB estimates directly from fastq files, incorporating somatic variant calling with Manta, Strelka2, and Mutect2, and microsatellite instability profiling with MSISensor. These tools are provided in a Singularity container downloaded by the workflow at runtime, allowing the entire workflow to be run identically on most computing platforms. To test the reproducibility of TMBur TMB estimates, we performed replicate runs on WGS data derived from the COLO829 and COLO829BL cell lines at multiple research centres. The clinical value of derived TMB estimates was then evaluated using a cohort of 90 patients with advanced, metastatic cancer that received ICIs following WGS analysis. Patients were split into groups based on a threshold of 10/Mb, and time to progression from initiation of ICIs was examined using Kaplan-Meier and cox-proportional hazards analyses. RESULTS: TMBur produced identical TMB estimates across replicates and at multiple analysis centres. The clinical utility of TMBur-derived TMB estimates were validated, with a genomic TMB ≥ 10/Mb demonstrating improved time to progression, even after correcting for differences in tumor type (HR = 0.39, p = 0.012). CONCLUSIONS: TMBur, a shareable workflow, generates consistent whole genome derived TMB estimates predictive of response to ICIs across multiple analysis centres. Reproducible TMB estimates from this approach can improve collaboration and ensure equitable treatment and clinical trial access spanning jurisdictions.


Assuntos
Biomarcadores Tumorais/genética , Mutação , Neoplasias/genética , Sequenciamento Completo do Genoma/métodos , Humanos , Estimativa de Kaplan-Meier , Instabilidade de Microssatélites , Repetições de Microssatélites/genética , Neoplasias/metabolismo , Neoplasias/terapia , Seleção de Pacientes , Modelos de Riscos Proporcionais , Reprodutibilidade dos Testes
18.
NPJ Precis Oncol ; 6(1): 65, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115869

RESUMO

The advent of dose intensified interval compressed therapy has improved event-free survival for patients with localized Ewing sarcoma (EwS) to 78% at 5 years. However, nearly a quarter of patients with localized tumors and 60-80% of patients with metastatic tumors suffer relapse and die of disease. In addition, those who survive are often left with debilitating late effects. Clinical features aside from stage have proven inadequate to meaningfully classify patients for risk-stratified therapy. Therefore, there is a critical need to develop approaches to risk stratify patients with EwS based on molecular features. Over the past decade, new technology has enabled the study of multiple molecular biomarkers in EwS. Preliminary evidence requiring validation supports copy number changes, and loss of function mutations in tumor suppressor genes as biomarkers of outcome in EwS. Initial studies of circulating tumor DNA demonstrated that diagnostic ctDNA burden and ctDNA clearance during induction are also associated with outcome. In addition, fusion partner should be a pre-requisite for enrollment on EwS clinical trials, and the fusion type and structure require further study to determine prognostic impact. These emerging biomarkers represent a new horizon in our understanding of disease risk and will enable future efforts to develop risk-adapted treatment.

19.
Genome Biol ; 23(1): 173, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945623

RESUMO

BACKGROUND: Simple translocations and complex rearrangements are formed through illegitimate ligations of double-strand breaks of fusion partners and lead to generation of oncogenic fusion genes that affect cellular function. The contact first hypothesis states that fusion partners tend to colocalize prior to fusion in normal cells. Here we test this hypothesis at the single-cell level and explore the underlying mechanism. RESULTS: By analyzing published single-cell diploid Hi-C datasets, we find partner genes fused in leukemia exhibit smaller spatial distances than those fused in solid tumor and control gene pairs. Intriguingly, multiple partners tend to colocalize with KMT2A in the same cell. 3D genome architecture has little association with lineage decision of KMT2A fusion types in leukemia. Besides simple translocations, complex rearrangement-related KMT2A fusion genes (CRGs) also show closer proximity and belong to a genome-wide mutual proximity network. We find CRGs are co-expressed, co-localized, and enriched in the targets of the transcriptional factor RUNX1, suggesting they may be involved in RUNX1-mediated transcription factories. Knockdown of RUNX1 leads to significantly fewer contacts among CRGs. We also find CRGs are enriched in active transcriptional regions and loop anchors, and exhibit high levels of TOP2-mediated DNA breakages. Inhibition of transcription leads to reduced DNA breakages of CRGs. CONCLUSIONS: Our results demonstrate KMT2A partners and CRGs may form dynamic and multipartite spatial clusters in individual cells that may be involved in RUNX1-mediated transcription factories, wherein massive DNA damages and illegitimate ligations of genes may occur, leading to complex rearrangements and KMT2A fusions in leukemia.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Diploide , Rearranjo Gênico , Humanos , Leucemia/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...