Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; 18(12): 2390-2400, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845711

RESUMO

The quest for artificial RNA viral complexes with authentic structure while being non-replicative is on its way for the development of viral vaccines. RNA viruses contain capsid proteins that interact with the genome during morphogenesis. The sequence and properties of the protein and genome determine the structure of the virus. For example, the Pariacoto virus ssRNA genome assembles into a dodecahedron. Virus-inspired nanotechnology has progressed remarkably due to the unique structural and functional properties of viruses, which can inspire the design of novel nanomaterials. RNA is a programmable biopolymer able to self-assemble sophisticated 3D structures with rich functionalities. RNA dodecahedrons mimicking the Pariacoto virus quasi-icosahedral genome structures were constructed from both native and 2'-F modified RNA oligos. The RNA dodecahedron easily self-assembled using the stable pRNA three-way junction of bacteriophage phi29 as building blocks. The RNA dodecahedron cage was further characterized by cryo-electron microscopy and atomic force microscopy, confirming the spontaneous and homogenous formation of the RNA cage. The reported RNA dodecahedron cage will likely provide further studies on the mechanisms of interaction of the capsid protein with the viral genome while providing a template for further construction of the viral RNA scaffold to add capsid proteins for the assembly of the viral nucleocapsid as a model. Understanding the self-assembly and RNA folding of this RNA cage may offer new insights into the 3D organization of viral RNA genomes. The reported RNA cage also has the potential to be explored as a novel virus-inspired nanocarrier.


Assuntos
Proteínas do Capsídeo/genética , Genoma Viral , Nanotecnologia/métodos , Nodaviridae/genética , RNA Viral/química , RNA Viral/genética , Proteínas Virais/genética , Proteínas do Capsídeo/metabolismo , Nodaviridae/metabolismo , Proteínas Virais/metabolismo
2.
Nano Res ; 12(8): 1952-1958, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32153728

RESUMO

Nanotubes are miniature materials with significant potential applications in nanotechnological, medical, biological and material sciences. The quest for manufacturing methods of nano-mechanical modules is in progress. For example, the application of carbon nanotubes has been extensively investigated due to the precise width control, but the precise length control remains challenging. Here we report two approaches for the one-pot self-assembly of RNA nanotubes. For the first approach, six RNA strands were used to assemble the nanotube by forming a 11 nm long hollow channel with the inner diameter of 1.7 nm and the outside diameter of 6.3 nm. For the second approach, six RNA strands were designed to hybridize with their neighboring strands by complementary base pairing and formed a nanotube with a six-helix hollow channel similar to the nanotube assembled by the first approach. The fabricated RNA nanotubes were characterized by gel electrophoresis and atomic force microscopy (AFM), confirming the formation of nanotube-shaped RNA nanostructures. Cholesterol molecules were introduced into RNA nanotubes to facilitate their incorporation into lipid bilayer. Incubation of RNA nanotube complex with the free-standing lipid bilayer membrane under applied voltage led to discrete current signatures. Addition of peptides into the sensing chamber revealed discrete steps of current blockage. Polyarginine peptides with different lengths can be detected by current signatures, suggesting that the RNA-cholesterol complex holds the promise of achieving single molecule sensing of peptides.

3.
Nanomedicine ; 12(3): 835-844, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26656633

RESUMO

We report programmable self-assembly of branched, 3D globular, monodisperse and nanoscale sized dendrimers using RNA as building blocks. The central core and repeating units of the RNA dendrimer are derivatives of the ultrastable three-way junction (3WJ) motif from the bacteriophage phi29 motor pRNA. RNA dendrimers were constructed by step-wise self-assembly of modular 3WJ building blocks initiating with a single 3WJ core (Generation-0) with overhanging sticky end and proceeding in a radial manner in layers up to Generation-4. The final constructs were generated under control without any structural defects in high yield and purity, as demonstrated by gel electrophoresis and AFM imaging. Upon incorporation of folate on the peripheral branches of the RNA dendrimers, the resulting constructs showed high binding and internalization into cancer cells. RNA dendrimers are envisioned to have a major impact in targeting, disease therapy, molecular diagnostics and bioelectronics in the near future. FROM THE CLINICAL EDITOR: Dendrimers are gaining importance as a carrier platform for diagnosis and therapeutics. The authors here reported building of their dendrimer molecules using RNA as building blocks. The addition of folate also allowed recognition and subsequent binding to tumor cells. This new construct may prove to be useful in many clinical settings.


Assuntos
Bacteriófagos/química , Dendrímeros/química , Nanoestruturas/química , Nanotecnologia/métodos , RNA Viral/química , Sequência de Bases , Linhagem Celular Tumoral , Dendrímeros/metabolismo , Dendrímeros/farmacocinética , Ácido Fólico/química , Ácido Fólico/metabolismo , Humanos , Modelos Moleculares , RNA Viral/metabolismo , RNA Viral/farmacocinética , Termodinâmica
4.
RNA ; 19(9): 1226-37, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23884902

RESUMO

The bacteriophage phi29 DNA packaging motor, one of the strongest biological motors characterized to date, is geared by a packaging RNA (pRNA) ring. When assembled from three RNA fragments, its three-way junction (3WJ) motif is highly thermostable, is resistant to 8 M urea, and remains associated at extremely low concentrations in vitro and in vivo. To elucidate the structural basis for its unusual stability, we solved the crystal structure of this pRNA 3WJ motif at 3.05 Å. The structure revealed two divalent metal ions that coordinate 4 nt of the RNA fragments. Single-molecule fluorescence resonance energy transfer (smFRET) analysis confirmed a structural change of 3WJ upon addition of Mg²âº. The reported pRNA 3WJ conformation is different from a previously published construct that lacks the metal coordination sites. The phi29 DNA packaging motor contains a dodecameric connector at the vertex of the procapsid, with a central pore for DNA translocation. This portal connector serves as the foothold for pRNA binding to procapsid. Subsequent modeling of a connector/pRNA complex suggests that the pRNA of the phi29 DNA packaging motor exists as a hexameric complex serving as a sheath over the connector. The model of hexameric pRNA on the connector agrees with AFM images of the phi29 pRNA hexamer acquired in air and matches all distance parameters obtained from cross-linking, complementary modification, and chemical modification interference.


Assuntos
Fagos Bacilares/genética , Empacotamento do DNA , DNA Viral/química , RNA Viral/química , Sítios de Ligação , Proteínas do Capsídeo/química , Cátions Bivalentes , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Magnésio/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Estabilidade de RNA , Montagem de Vírus
5.
Biochemistry ; 52(3): 520-36, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23286197

RESUMO

The SLIP1-SLBP complex activates translation of replication-dependent histone mRNAs. In this report, we describe how the activity of the SLIP1-SLBP complex is modulated by phosphorylation and oligomerization. Biophysical characterization of the free proteins shows that whereas SLIP1 is a homodimer that does not bind RNA, human SLBP is an intrinsically disordered protein that is phosphorylated at 23 Ser/Thr sites when expressed in a eukaryotic expression system such as baculovirus. The bacterially expressed unphosphorylated SLIP1-SLBP complex forms a 2:2 high-affinity (K(D) < 0.9 nM) heterotetramer that is also incapable of binding histone mRNA. In contrast, phosphorylated SLBP from baculovirus has a weak affinity (K(D) ~3 µM) for SLIP1. Sequential binding of phosphorylated SLBP to the histone mRNA stem-loop motif followed by association with SLIP1 is required to form an "active" ternary complex. Phosphorylation of SLBP at Thr171 promotes dissociation of the heterotetramer to the SLIP1-SLBP heterodimer. Using alanine scanning mutagenesis, we demonstrate that the binding site on SLIP1 for SLBP lies close to the dimer interface. A single-point mutant near the SLIP1 homodimer interface abolished interaction with SLBP in vitro and reduced the abundance of histone mRNA in vivo. On the basis of these biophysical studies, we propose that oligomerization and SLBP phosphorylation may regulate the SLBP-SLIP1 complex in vivo. SLIP1 may act to sequester SLBP in vivo, protecting it from proteolytic degradation as an inactive heterotetramer, or alternatively, formation of the SLIP1-SLBP heterotetramer may facilitate removal of SLBP from the histone mRNA prior to histone mRNA degradation.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Histonas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Proteínas de Transporte/genética , Histonas/química , Histonas/genética , Humanos , Cinética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Nucleares/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Mutação Puntual , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Dobramento de RNA , Proteínas de Ligação a RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina/química , Serina/metabolismo , Treonina/química , Treonina/metabolismo , Tirosina/química , Tirosina/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA